§ 121.293 Special airworthiness requirements for nontransport category airplanes type certificated after December 31, 1964. No certificate holder may operate a nontransport category airplane manufactured after December 20, 1999 unless the airplane contains a takeoff warning system that meets the requirements of 14 CFR 25.703. However, the takeoff warning system does not have to cover any device for which it has been demonstrated that takeoff with that device in the most adverse position would not create a hazardous condition. [Doc. No. 28154, 60 FR 65929, Dec. 20, 1995] ### § 121.295 Location for a suspect device. After November 28, 2009, all airplanes with a maximum certificated passenger seating capacity of more than 60 persons must have a location where a suspected explosive or incendiary device found in flight can be placed to minimize the risk to the airplane. [Doc. No. FAA–2006–26722, 73 FR 63880, Oct. 28, 2008] ### Subpart K—Instrument and Equipment Requirements SOURCE: Docket No. 6258, 29 FR 19205, Dec. 31, 1964, unless otherwise noted. ### §121.301 Applicability. This subpart prescribes instrument and equipment requirements for all certificate holders. ### § 121.303 Airplane instruments and equipment. - (a) Unless otherwise specified, the instrument and equipment requirements of this subpart apply to all operations under this part. - (b) Instruments and equipment required by §§ 121.305 through 121.359 and 121.803 must be approved and installed in accordance with the airworthiness requirements applicable to them. - (c) Each airspeed indicator must be calibrated in knots, and each airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards must be expressed in knots. - (d) Except as provided in §§ 121.627(b) and 121.628, no person may take off any airplane unless the following instruments and equipment are in operable condition: - (1) Instruments and equipment required to comply with airworthiness requirements under which the airplane is type certificated and as required by §§ 121.213 through 121.283 and 121.289. - (2) Instruments and equipment specified in §§121.305 through 121.321, 121.359, 121.360, and 121.803 for all operations, and the instruments and equipment specified in §§121.323 through 121.351 for the kind of operation indicated, wherever these items are not already required by paragraph (d)(1) of this section. [Doc. No. 6258, 29 FR 19202, Dec. 31, 1964, as amended by Amdt. 121–44, 33 FR 14406, Sept. 25, 1968; Amdt. 121–65, 35 FR 12709, Aug. 11, 1970; Amdt. 121–114, 39 FR 44440, Dec. 24, 1974; Amdt. 121–126, 40 FR 55314, Nov. 28, 1975; Amdt. 121–222, 56 FR 12310, Mar. 22, 1991; Amdt. 121–253, 61 FR 2611, Jan. 26, 1996; Amdt. 121–281, 66 FR 19043, Apr. 12, 2001] ### § 121.305 Flight and navigational equipment. No person may operate an airplane unless it is equipped with the following flight and navigational instruments and equipment: - (a) An airspeed indicating system with heated pitot tube or equivalent means for preventing malfunctioning due to icing. - (b) A sensitive altimeter. - (c) A sweep-second hand clock (or approved equivalent). - (d) A free-air temperature indicator. - (e) A gyroscopic bank and pitch indicator (artificial horizon). - (f) A gyroscopic rate-of-turn indicator combined with an integral slip-skid indicator (turn-and-bank indicator) except that only a slip-skid indicator is required when a third attitude instrument system usable through flight attitudes of 360° of pitch and roll is installed in accordance with paragraph (k) of this section. - (g) A gyroscopic direction indicator (directional gyro or equivalent). - (h) A magnetic compass. - (i) A vertical speed indicator (rate-of-climb indicator). - (j) On the airplane described in this paragraph, in addition to two gyroscopic bank and pitch indicators (artificial horizons) for use at the pilot stations, a third such instrument is installed in accordance with paragraph (k) of this section: - (1) On each turbojet powered airplane. - (2) On each turbopropeller powered airplane having a passenger-seat configuration of more than 30 seats, excluding each crewmember seat, or a payload capacity of more than 7,500 pounds. - (3) On each turbopropeller powered airplane having a passenger-seat configuration of 30 seats or fewer, excluding each crewmember seat, and a payload capacity of 7,500 pounds or less that is manufactured on or after March 20, 1997. - (4) After December 20, 2010, on each turbopropeller powered airplane having a passenger seat configuration of 10–30 seats and a payload capacity of 7,500 pounds or less that was manufactured before March 20, 1997. - (k) When required by paragraph (j) of this section, a third gyroscopic bankand-pitch indicator (artificial horizon) that: - (1) Is powered from a source independent of the electrical generating system; - (2) Continues reliable operation for a minimum of 30 minutes after total failure of the electrical generating system; - (3) Operates independently of any other attitude indicating system; - (4) Is operative without selection after total failure of the electrical generating system; - (5) Is located on the instrument panel in a position acceptable to the Administrator that will make it plainly visible to and usable by each pilot at his or her station; and - (6) Is appropriately lighted during all phases of operation. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964, as amended by Amdt. 121–57, 35 FR 304, Jan. 8, 1970; Amdt. 121–60, 35 FR 7108, May 6, 1970; Amdt. 121–81, 36 FR 23050, Dec. 3, 1971; Amdt. 121–130, 41 FR 47229, Oct. 28, 1976; Amdt. 121–230, 58 FR 12158, Mar. 3, 1993; Amdt. 121–251, 60 FR 65929, Dec. 20, 1995; Amdt. 121–262, 62 FR 13256, Mar. 19, 1997] ### § 121.306 Portable electronic devices. - (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part. - (b) Paragraph (a) of this section does not apply to— - (1) Portable voice recorders; - (2) Hearing aids; - (3) Heart pacemakers; - (4) Electric shavers; or - (5) Any other portable electronic device that the part 119 certificate holder has determined will not cause interference with the navigation or communication system of the aircraft on which it is to be used. - (c) The determination required by paragraph (b)(5) of this section shall be made by that part 119 certificate holder operating the particular device to be used. [Doc. No. FAA-1998-4954, 64 FR 1080, Jan. 7, 1999] ### §121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine powered airplanes to provide equivalent safety, no person may conduct any operation under this part without the following engine instruments: - (a) A carburetor air temperature indicator for each engine. - (b) A cylinder head temperature indicator for each air-cooled engine. - (c) A fuel pressure indicator for each engine. - (d) A fuel flowmeter or fuel mixture indicator for each engine not equipped with an automatic altitude mixture control. - (e) A means for indicating fuel quantity in each fuel tank to be used. - (f) A manifold pressure indicator for each engine. - (g) An oil pressure indicator for each engine - (h) An oil quantity indicator for each oil tank when a transfer or separate oil reserve supply is used. - (i) An oil-in temperature indicator for each engine. - (j) A tachometer for each engine. - (k) An independent fuel pressure warning device for each engine or a master warning device for all engines with a means for isolating the individual warning circuits from the master warning device. - (1) A device for each reversible propeller, to indicate to the pilot when the propeller is in reverse pitch, that complies with the following: - (1) The device may be actuated at any point in the reversing cycle between the normal low pitch stop position and full reverse pitch, but it may not give an indication at or above the normal low pitch stop position. - (2) The source of indication must be actuated by the propeller blade angle or be directly responsive to it. ### §121.308 Lavatory fire protection. - (a) Except as provided in paragraphs (c) and (d) of this section, no person may operate a passenger-carrying airplane unless each lavatory in the airplane is equipped with a smoke detector system or equivalent that provides a warning light in the cockpit or provides a warning light or audio warning in the passenger cabin which would be readily detected by a flight attendant, taking into consideration the positioning of flight attendants throughout the passenger compartment during various phases of flight. - (b) Except as provided in paragraph (c) of this section, no person may operate a passenger-carrying airplane unless each lavatory in the airplane is equipped with a built-in fire extinguisher for each disposal receptacle for towels, paper, or waste located within the lavatory. The built-in fire extinguisher must be designed to discharge automatically into each disposal receptacle upon occurrence of a fire in the receptacle. - (c) Until December 22, 1997, a certificate holder described in §121.2(a) (1) or (2) may operate an airplane with a passenger seat configuration of 30 or fewer seats that does not comply with the smoke detector system requirements described in paragraph (a) of this section and the fire extinguisher requirements described in paragraph (b) of this section. - (d) After December 22, 1997, no person may operate a nontransport category airplane type certificated after December 31, 1964, with a passenger seat configuration of 10–19 seats unless that airplane complies with the smoke detector system requirements described in paragraph (a) of this section, except that the smoke detector system or equivalent must provide a warning light in the cockpit or an audio
warning that would be readily detected by the flightcrew. [Doc. No. 28154, 60 FR 65929, Dec. 20, 1995] #### §121.309 Emergency equipment. - (a) *General*: No person may operate an airplane unless it is equipped with the emergency equipment listed in this section and in §121.310. - (b) Each item of emergency and flotation equipment listed in this section and in §§ 121.310, 121.339, and 121.340— - (1) Must be inspected regularly in accordance with inspection periods established in the operations specifications to ensure its condition for continued serviceability and immediate readiness to perform its intended emergency purposes: - (2) Must be readily accessible to the crew and, with regard to equipment located in the passenger compartment, to passengers; - (3) Must be clearly identified and clearly marked to indicate its method of operation; and - (4) When carried in a compartment or container, must be carried in a compartment or container marked as to contents and the compartment or container, or the item itself, must be marked as to date of last inspection. - (c) Hand fire extinguishers for crew, passenger, cargo, and galley compartments. Hand fire extinguishers of an approved type must be provided for use in crew, passenger, cargo, and galley compartments in accordance with the following: - (1) The type and quantity of extinguishing agent must be suitable for the kinds of fires likely to occur in the compartment where the extinguisher is intended to be used and, for passenger compartments, must be designed to minimize the hazard of toxic gas concentrations. - (2) Cargo compartments. At least one hand fire extinguisher must be conveniently located for use in each class E cargo compartment that is accessible to crewmembers during flight. - (3) Galley compartments. At least one hand fire extinguisher must be conveniently located for use in each galley located in a compartment other than a passenger, cargo, or crew compartment. - (4) Flightcrew compartment. At least one hand fire extinguisher must be conveniently located on the flight deck for use by the flightcrew. - (5) Passenger compartments. Hand fire extinguishers for use in passenger compartments must be conveniently located and, when two or more are required, uniformly distributed throughout each compartment. Hand fire extinguishers shall be provided in passenger compartments as follows: - (i) For airplanes having passenger seats accommodating more than 6 but fewer than 31 passengers, at least one. - (ii) For airplanes having passenger seats accommodating more than 30 but fewer than 61 passengers, at least two. - (iii) For airplanes having passenger seats accommodating more than 60 passengers, there must be at least the following number of hand fire extinguishers: ### MINIMUM NUMBER OF HAND FIRE EXTINGUISHERS | Passenger seating accommodations: | | |-----------------------------------|--| | 61 through 200 | | | 201 through 300 | | | 301 through 400 | | | 401 through 500 | | | 501 through 600 | | | 601 or more | | - (6) Notwithstanding the requirement for uniform distribution of hand fire extinguishers as prescribed in paragraph (c)(5) of this section, for those cases where a galley is located in a passenger compartment, at least one hand fire extinguisher must be conveniently located and easily accessible for use in the galley. - (7) At least two of the required hand fire extinguisher installed in passenger-carrying airplanes must contain Halon 1211 (bromochlorofluoromethane) or equivalent as the extinguishing agent. At least one hand fire extinguisher in the passenger compartment must contain Halon 1211 or equivalent. - (d) [Reserved] - (e) Crash ax. Except for nontransport category airplanes type certificated after December 31, 1964, each airplane must be equipped with a crash ax. - (f) Megaphones. Each passenger-carrying airplane must have a portable battery-powered megaphone or megaphones readily accessible to the crewmembers assigned to direct emergency evacuation, installed as follows: - (1) One megaphone on each airplane with a seating capacity of more than 60 and less than 100 passengers, at the most rearward location in the passenger cabin where it would be readily accessible to a normal flight attendant seat. However, the Administrator may grant a deviation from the requirements of this subparagraph if he finds that a different location would be more useful for evacuation of persons during an emergency. - (2) Two megaphones in the passenger cabin on each airplane with a seating capacity of more than 99 passengers, one installed at the forward end and the other at the most rearward location where it would be readily accessible to a normal flight attendant seat. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964] EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §121.309, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov. ### § 121.310 Additional emergency equipment. (a) Means for emergency evacuation. Each passenger-carrying landplane emergency exit (other than over-thewing) that is more than 6 feet from the ground with the airplane on the ground and the landing gear extended, must have an approved means to assist the occupants in descending to the ground. The assisting means for a floor-level emergency exit must meet the requirements of §25.809(f)(1) of this chapter in effect on April 30, 1972, except that, for any airplane for which the application for the type certificate was filed after that date, it must meet the requirements under which the airplane was type certificated. An assisting means that deploys automatically must be armed during taxiing, takeoffs, and landings. However, if the Administrator finds that the design of the exit makes compliance impractical, he may grant a deviation from the requirement of automatic deployment if the assisting means automatically erects upon deployment and, with respect to required emergency exits, if an emergency evacuation demonstration is conducted in accordance with §121.291(a). This paragraph does not apply to the rear window emergency exit of DC-3 airplanes operated with less than 36 occupants, including crewmembers and less than five exits authorized for passenger use. - (b) *Interior emergency exit marking*. The following must be complied with for each passenger-carrying airplane: - (1) Each passenger emergency exit, its means of access, and its means of opening must be conspicuously marked. The identity and location of each passenger emergency exit must be recognizable from a distance equal to the width of the cabin. The location of each passenger emergency exit must be indicated by a sign visible to occupants approaching along the main passenger aisle. There must be a locating sign— - (i) Above the aisle near each overthe-wing passenger emergency exit, or at another ceiling location if it is more practical because of low headroom: - (ii) Next to each floor level passenger emergency exit, except that one sign may serve two such exits if they both can be seen readily from that sign; and - (iii) On each bulkhead or divider that prevents fore and aft vision along the passenger cabin, to indicate emergency exits beyond and obscured by it, except that if this is not possible the sign may be placed at another appropriate location. - (2) Each passenger emergency exit marking and each locating sign must meet the following: - (i) Except as provided in paragraph (b)(2)(iii) of this section, for an airplane for which the application for the type certificate was filed prior to May 1, 1972, each passenger emergency exit marking and each locating sign must be manufactured to meet the requirements of §25.812(b) of this chapter in effect on April 30, 1972. On these airplanes, no sign may continue to be used if its luminescence (brightness) decreases to below 100 microlamberts. The colors may be reversed if it in- creases the emergency illumination of the passenger compartment. However, the Administrator may authorize deviation from the 2-inch background requirements if he finds that special circumstances exist that make compliance impractical and that the proposed deviation provides an equivalent level of safety. - (ii) For a transport category airplane for which the application for the type certificate was filed on or after May 1, 1972, each passenger emergency exit marking and each locating sign must be manufactured to meet the interior emergency exit marking requirements under which the airplane was type certificated. On these airplanes, no sign may continue to be used if its luminescence (brightness) decreases to below 250 microlamberts. - (iii) For a nontransport category turbopropeller powered airplane type certificated after December 31, 1964, each passenger emergency exit marking and each locating sign must be manufactured to meet the requirements of \$23.811(b) of this chapter. On these airplanes, no sign may continue to be used if its luminescence (brightness) decreases to below 100 microlamberts. - (c) Lighting for interior emergency exit markings. Except for nontransport category airplanes type certificated after December 31, 1964, each passenger-carrying airplane must have an emergency lighting system, independent of the main lighting system. However, sources of general cabin illumination may be common to both the emergency and the main lighting systems if the power supply to the emergency lighting system is independent of the power supply to the main lighting system. The emergency lighting system must— - (1) Illuminate each passenger exit marking and locating sign; - (2) Provide enough general lighting in the passenger cabin so that the average illumination when measured at 40-inch intervals at seat armrest height, on the centerline of the main passenger aisle, is at least 0.05 foot-candles; and - (3) For airplanes type certificated after January 1, 1958, after November 26, 1986, include floor proximity emergency escape
path marking which meets the requirements of §25.812(e) of this chapter in effect on November 26, 1984. - (d) Emergency light operation. Except for lights forming part of emergency lighting subsystems provided in compliance with §25.812(h) of this chapter (as prescribed in paragraph (h) of this section) that serve no more than one assist means, are independent of the airplane's main emergency lighting systems, and are automatically activated when the assist means is deployed, each light required by paragraphs (c) and (h) of this section must comply with the following: - (1) Each light must— - (i) Be operable manually both from the flightcrew station and, for airplanes on which a flight attendant is required, from a point in the passenger compartment that is readily accessible to a normal flight attendant seat: - (ii) Have a means to prevent inadvertent operation of the manual controls; and - (iii) When armed or turned on at either station, remain lighted or become lighted upon interruption of the airplane's normal electric power. - (2) Each light must be armed or turned on during taxiing, takeoff, and landing. In showing compliance with this paragraph a transverse vertical separation of the fuselage need not be considered. - (3) Each light must provide the required level of illumination for at least 10 minutes at the critical ambient conditions after emergency landing. - (4) Each light must have a cockpit control device that has an "on," "off," and "armed" position. - (e) Emergency exit operating handles. (1) For a passenger-carrying airplane for which the application for the type certificate was filed prior to May 1, 1972, the location of each passenger emergency exit operating handle, and instructions for opening the exit, must be shown by a marking on or near the exit that is readable from a distance of 30 inches. In addition, for each Type I and Type II emergency exit with a locking mechanism released by rotary motion of the handle, the instructions for opening must be shown by— - (i) A red arrow with a shaft at least three-fourths inch wide and a head twice the width of the shaft, extending - along at least 70° of arc at a radius approximately equal to three-fourths of the handle length; and - (ii) The word "open" in red letters 1 inch high placed horizontally near the head of the arrow. - (2) For a passenger-carrying airplane for which the application for the type certificate was filed on or after May 1, 1972, the location of each passenger emergency exit operating handle and instructions for opening the exit must be shown in accordance with the requirements under which the airplane was type certificated. On these airplanes, no operating handle or operating handle cover may continue to be used if its luminescence (brightness) decreases to below 100 microlamberts. - (f) Emergency exit access. Access to emergency exits must be provided as follows for each passenger-carrying transport category airplane: - (1) Each passage way between individual passenger areas, or leading to a Type I or Type II emergency exit, must be unobstructed and at least 20 inches wide. - (2) For each Type I or Type II emergency exit equipped with an assist means, there must be enough space next to the exit to allow a crewmember to assist in the evacuation of passengers without reducing the unobstructed width of the passageway below that required in paragraph (f)(1) of this section. In addition, all airplanes manufactured on or after November 26, 2008 must comply with the provisions of $\S 25.813(b)(1)$, (b)(2), (b)(3) and (b)(4) in effect on November 26, 2004. However, a deviation from this requirement may be authorized for an airplane certificated under the provisions of part 4b of the Civil Air Regulations in effect before December 20, 1951, if the Administrator finds that special circumstances exist that provide an equivalent level of safety. - (3) There must be access from the main aisle to each Type III and Type IV exit. The access from the aisle to these exits must not be obstructed by seats, berths, or other protrusions in a manner that would reduce the effectiveness of the exit. In addition— - (i) For an airplane for which the application for the type certificate was filed prior to May 1, 1972, the access must meet the requirements of §25.813(c) of this chapter in effect on April 30, 1972; and - (ii) For an airplane for which the application for the type certificate was filed on or after May 1, 1972, the access must meet the emergency exit access requirements under which the airplane was type certificated; except that, - (iii) After December 3, 1992, the access for an airplane type certificated after January 1, 1958, must meet the requirements of §25.813(c) of this chapter, effective June 3, 1992. - (iv) Contrary provisions of this section notwithstanding, the Manager of the Transport Airplane Directorate, Aircraft Certification Service, Federal Aviation Administration, may authorize deviation from the requirements of paragraph (f)(3)(iii) of this section if it determined that special cumstances make compliance impractical. Such special circumstances include, but are not limited to, the following conditions when they preclude achieving compliance with $\S25.813(c)(1)(i)$ or (ii) without a reduction in the total number of passenger seats: emergency exits located in close proximity to each other; fixed installations such as lavatories, galleys, etc.; permanently mounted bulkheads; an insufficient number of rows ahead of or behind the exit to enable compliance without a reduction in the seat row pitch of more than one inch; or an insufficient number of such rows to enable compliance without a reduction in the seat row pitch to less than 30 inches. A request for such grant of deviation must include credible reasons as to why literal compliance with §25.813(c)(1)(i) or (ii) is impractical and a description of the steps taken to achieve a level of safety as close to that intended by $\S25.813(c)(1)(i)$ or (ii) as is practical. - (v) The Manager of the Transport Airplane Directorate, Aircraft Certification Service, Federal Aviation Administration, may also authorize a compliance date later than December 3, 1992, if it is determined that special circumstances make compliance by that date impractical. A request for such grant of deviation must outline the airplanes for which compliance will be achieved by December 3, 1992, and include a proposed schedule for incremental compliance of the remaining airplanes in the operator's fleet. In addition, the request must include credible reasons why compliance cannot be achieved earlier. - (4) If it is necessary to pass through a passageway between passenger compartments to reach any required emergency exit from any seat in the passenger cabin, the passageway must not be obstructed. However, curtains may be used if they allow free entry through the passageway. - (5) No door may be installed in any partition between passenger compartments. - (6) No person may operate an airplane manufactured after November 27, 2006, that incorporates a door installed between any passenger seat occupiable for takeoff and landing and any passenger emergency exit, such that the door crosses any egress path (including aisles, crossaisles and passageways). - (7) If it is necessary to pass through a doorway separating the passenger cabin from other areas to reach required emergency exit from any passenger seat, the door must have a means to latch it in open position, and the door must be latched open during each takeoff and landing. The latching means must be able to withstand the loads imposed upon it when the door is subjected to the ultimate inertia forces, relative to the surrounding structure, listed in §25.561(b) of this chapter. - (g) Exterior exit markings. Each passenger emergency exit and the means of opening that exit from the outside must be marked on the outside of the airplane. There must be a 2-inch colored band outlining each passenger emergency exit on the side of the fuse-lage. Each outside marking, including the band, must be readily distinguishable from the surrounding fuselage area by contrast in color. The markings must comply with the following: - (1) If the reflectance of the darker color is 15 percent or less, the reflectance of the lighter color must be at least 45 percent. - (2) If the reflectance of the darker color is greater than 15 percent, at least a 30 percent difference between its reflectance and the reflectance of the lighter color must be provided. - (3) Exits that are not in the side of the fuselage must have the external means of opening and applicable instructions marked conspicuously in red or, if red is inconspicuous against the background color, in bright chrome yellow and, when the opening means for such an exit is located on only one side of the fuselage, a conspicuous marking to that effect must be provided on the other side. Reflectance is the ratio of the luminous flux reflected by a body to the luminous flux it receives. - (h) Exterior emergency lighting and escape route. (1) Except for nontransport category airplanes certificated after December 31, 1964, each passenger-carrying airplane must be equipped with exterior lighting that meets the following requirements: - (i) For an airplane for which the application for the type certificate was filed prior to May 1, 1972, the requirements of §25.812 (f) and (g) of this chapter in effect on April 30, 1972. - (ii) For an airplane for which the application for the type certificate was filed on or after May 1, 1972, the exterior emergency lighting requirements under which the airplane was type certificated. - (2) Each passenger-carrying airplane must be equipped with a slip-resistant escape route that meets the following requirements: - (i) For an airplane for which the application for the type certificate was filed prior to May 1, 1972, the requirements of §25.803(e) of this chapter in effect on April 30, 1972. - (ii) For
an airplane for which the application for the type certificate was filed on or after May 1, 1972, the slip-resistant escape route requirements under which the airplane was type certificated. - (i) Floor level exits. Each floor level door or exit in the side of the fuselage (other than those leading into a cargo or baggage compartment that is not accessible from the passenger cabin) that is 44 or more inches high and 20 or more inches wide, but not wider than 46 inches, each passenger ventral exit (except the ventral exits on M-404 and CV-240 airplanes), and each tail cone - exit, must meet the requirements of this section for floor level emergency exits. However, the Administrator may grant a deviation from this paragraph if he finds that circumstances make full compliance impractical and that an acceptable level of safety has been achieved. - (j) Additional emergency exits. Approved emergency exits in the passenger compartments that are in excess of the minimum number of required emergency exits must meet all of the applicable provisions of this section except paragraphs (f)(1), (2), and (3) of this section and must be readily accessible. - (k) On each large passenger-carrying turbojet-powered airplane, each ventral exit and tailcone exit must be— - (1) Designed and constructed so that it cannot be opened during flight; and - (2) Marked with a placard readable from a distance of 30 inches and installed at a conspicuous location near the means of opening the exit, stating that the exit has been designed and constructed so that it cannot be opened during flight. - (1) Emergency exit features. (1) Each transport category airplane manufactured after November 26, 2007 must comply with the provisions of §25.809(i) and - (2) After November 26, 2007 each transport category airplane must comply with the provisions of §25.813(b)(6)(ii) in effect on November 26, 2007. - (m) Except for an airplane used in operations under this part on October 16, 1987, and having an emergency exit configuration installed and authorized for operation prior to October 16, 1987, for an airplane that is required to have more than one passenger emergency exit for each side of the fuselage, no passenger emergency exit shall be more than 60 feet from any adjacent passenger emergency exit on the same side of the same deck of the fuselage, as measured parallel to the airplane's longitudinal axis between the nearest exit edges. - (n) Portable lights. No person may operate a passenger-carrying airplane unless it is equipped with flashlight stowage provisions accessible from each flight attendant seat. [Doc. No. 2033, 30 FR 3205, Mar. 9, 1965] ### Federal Aviation Administration, DOT EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §121.310, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsvs.gov. ### § 121.311 Seats, safety belts, and shoulder harnesses. - (a) No person may operate an airplane unless there are available during the takeoff, en route flight, and landing— - (1) An approved seat or berth for each person on board the airplane who has reached his second birthday; and - (2) An approved safety belt for separate use by each person on board the airplane who has reached his second birthday, except that two persons occupying a berth may share one approved safety belt and two persons occupying a multiple lounge or divan seat may share one approved safety belt during en route flight only. - (b) Except as provided in this paragraph, each person on board an airplane operated under this part shall occupy an approved seat or berth with a separate safety belt properly secured about him or her during movement on the surface, takeoff, and landing. A safety belt provided for the occupant of a seat may not be used by more than one person who has reached his or her second birthday. Notwithstanding the preceding requirements, a child may: - (1) Be held by an adult who is occupying an approved seat or berth, provided the child has not reached his or her second birthday and the child does not occupy or use any restraining device: or - (2) Notwithstanding any other requirement of this chapter, occupy an approved child restraint system furnished by the certificate holder or one of the persons described in paragraph (b)(2)(i) of this section, provided: - (i) The child is accompanied by a parent, guardian, or attendant designated by the child's parent or guardian to attend to the safety of the child during the flight; - (ii) Except as provided in paragraph (b)(2)(ii)(D) of this section, the approved child restraint system bears one or more labels as follows: - (A) Seats manufactured to U.S. standards between January 1, 1981, and February 25, 1985, must bear the label: - "This child restraint system conforms to all applicable Federal motor vehicle safety standards." - (B) Seats manufactured to U.S. standards on or after February 26, 1985, must bear two labels: - (1) "This child restraint system conforms to all applicable Federal motor vehicle safety standards"; and - (2) "THIS RESTRAINT IS CERTIFIED FOR USE IN MOTOR VEHICLES AND AIRCRAFT" in red lettering: - (C) Seats that do not qualify under paragraphs (B)(2)(ii)(A) and (b)(2)(ii)(B) of this section must bear a label or markings showing: - (1) That the seat was approved by a foreign government; - (2) That the seat was manufactured under the standards of the United Nations; or - (3) That the seat or child restraint device furnished by the certificate holder was approved by the FAA through Type Certificate or Supplemental Type Certificate. - (4) That the seat or child restraint device furnished by the certificate holder, or one of the persons described in paragraph (b) (2) (i) of this section, was approved by the FAA in accordance with §21.305(d) or Technical Standard Order C-100b, or a later version. - (D) Except as provided in §121.311(b)(2)(ii)(C)(3) and §121.311(b)(2)(ii)(C)(4), booster-type child restraint systems (as defined in Federal Motor Vehicle Safety Standard No. 213 (49 CFR 571.213)), vest- and harness-type child restraint systems, and lap held child restraints are not approved for use in aircraft; and - (iii) The certificate holder complies with the following requirements: - (A) The restraint system must be properly secured to an approved forward-facing seat or berth; - (B) The child must be properly secured in the restraint system and must not exceed the specified weight limit for the restraint system; and - (C) The restraint system must bear the appropriate label(s). - (c) Except as provided in paragraph (c)(3) of this section, the following prohibitions apply to certificate holders: - (1) Except provided in § 121.311(b)(2)(ii)(C)(3) and 121.311(b)(2)(ii)(C)(4)no certificate holder may permit a child, in an aircraft, to occupy a booster-type child restraint system, a vest-type child restraint system, a harness-type child restraint system, or a lap held child restraint system during take off, landing, and movement on the surface. - (2) Except as required in paragraph (c)(1) of this section, no certificate holder may prohibit a child, if requested by the child's parent, guardian, or designated attendant, from occupying a child restraint system furnished by the child's parent, guardian, or designated attendant provided— - (i) The child holds a ticket for an approved seat or berth or such seat or berth is otherwise made available by the certificate holder for the child's use. - (ii) The requirements of paragraph (b)(2)(i) of this section are met; - (iii) The requirements of paragraph (b)(2)(iii) of this section are met; and - (iv) The child restraint system has one or more of the labels described in paragraphs (b)(2)(ii)(A) through (b)(2)(ii)(C) of this section. - (3) This section does not prohibit the certificate holder from providing child restraint systems authorized by this section or, consistent with safe operating practices, determining the most appropriate passenger seat location for the child restraint system. - (d) Each sideward facing seat must comply with the applicable requirements of §25.785(c) of this chapter. - (e) Except as provided in paragraphs (e)(1) through (e)(3) of this section, no certificate holder may take off or land an airplane unless each passenger seat back is in the upright position. Each passenger shall comply with instructions given by a crewmember in compliance with this paragraph. - (1) This paragraph does not apply to seat backs placed in other than the upright position in compliance with §121.310(f)(3). - (2) This paragraph does not apply to seats on which cargo or persons who are unable to sit erect for a medical reason are carried in accordance with procedures in the certificate holder's manual if the seat back does not ob- - struct any passenger's access to the aisle or to any emergency exit. - (3) On airplanes with no flight attendant, the certificate holder may take off or land as long as the flightcrew instructs each passenger to place his or her seat back in the upright position for takeoff and landing. - (f) No person may operate a transport category airplane that was type certificated after January 1, 1958, or a nontransport category airplane manufactured after March 20, 1997, unless it is equipped at each flight deck station with a combined safety belt and shoulder harness that meets the applicable requirements specified in §25.785 of this chapter, effective March 6, 1980, except that— - (1) Shoulder harnesses and combined safety belt and shoulder harnesses that were approved and installed before March 6, 1980, may continue to be used; and - (2) Safety belt and shoulder harness restraint systems may be designed to the inertia load factors established under the certification basis of the airplane. - (g) Each flight attendant must have a seat for takeoff and landing in the passenger compartment that meets the requirements of §25.785 of this chapter, effective March 6, 1980, except
that— - (1) Combined safety belt and shoulder harnesses that were approved and installed before March, 6, 1980, may continue to be used; and - (2) Safety belt and shoulder harness restraint systems may be designed to the inertia load factors established under the certification basis of the airplane. - (3) The requirements of §25.785(h) do not apply to passenger seats occupied by flight attendants not required by §121.391. - (h) Each occupant of a seat equipped with a shoulder harness or with a combined safety belt and shoulder harness must have the shoulder harness or combined safety belt and shoulder harness properly secured about that occupant during takeoff and landing, except that a shoulder harness that is not combined with a safety belt may be unfastened if the occupant cannot perform the required duties with the shoulder harness fastened. - (i) At each unoccupied seat, the safety belt and shoulder harness, if installed, must be secured so as not to interfere with crewmembers in the performance of their duties or with the rapid egress of occupants in an emergency. - (j) After October 27, 2009, no person may operate a transport category airplane type certificated after January 1, 1958 and manufactured on or after October 27, 2009 in passenger-carrying operations under this part unless all passenger and flight attendant seats on the airplane meet the requirements of \$25.562 in effect on or after June 16, 1988. [Doc No. 7522, 32 FR 13267, Sept. 20, 1967] EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §121.311, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov. ### § 121.312 Materials for compartment interiors. - (a) All interior materials; transport category airplanes and nontransport category airplanes type certificated before January 1, 1965. Except for the materials covered by paragraph (b) of this section, all materials in each compartment of a transport category airplane, or a nontransport category airplane type certificated before January 1, 1965, used by the crewmembers and passengers, must meet the requirements of §25.853 of this chapter in effect as follows, or later amendment thereto: - (1) Airplane with passenger seating capacity of 20 or more—(i) Manufactured after August 19, 1988, but prior to August 20, 1990. Except as provided in paragraph (a)(3)(ii) of this section, each airplane with a passenger capacity of 20 or more and manufactured after August 19, 1988, but prior to August 20, 1990, must comply with the heat release rate testing provisions of §25.853(d) in effect March 6, 1995 (formerly §25.853(a-1) in effect on August 20, 1986) (see App. L of this part), except that the total heat release over the first 2 minutes of sample exposure must not exceed 100 kilowatt minutes per square meter and the peak heat release rate must not exceed 100 kilowatts per square meter. - (ii) Manufactured after August 19, 1990. Each airplane with a passenger capac- ity of 20 or more and manufactured after August 19, 1990, must comply with the heat release rate and smoke testing provisions of §25.853(d) in effect March 6, 1995 (formerly §25.853(a-1)(see app. L of this part) in effect on September 26, 1988). - (2) Substantially complete replacement of the cabin interior on or after May 1, 1972—(i) Airplane for which the application for type certificate was filed prior to May 1, 1972. Except as provided in paragraph (a)(3)(i) or (a)(3)(ii) of this section, each airplane for which the application for type certificate was filed prior to May 1, 1972, must comply with the provisions of §25.853 in effect on April 30, 1972, regardless of passenger capacity, if there is a substantially complete replacement of the cabin interior after April 30, 1972. - (ii) Airplane for which the application for type certificate was filed on or after May 1, 1972. Except as provided in paragraph (a)(3)(i) or (a)(3)(ii) of this section, each airplane for which the application for type certificate was filed on or after May 1, 1972, must comply with the material requirements under which the airplane was type certificated, regardless of passenger capacity, if there is a substantially complete replacement of the cabin interior on or after that date. - (3) Airplane type certificated after January 1, 1958, with passenger capacity of 20 or more—(i) Substantially complete replacement of the cabin interior on or after March 6, 1995. Except as provided in paragraph (a)(3)(ii) of this section, each airplane that was type certificated after January 1, 1958, and has a passenger capacity of 20 or more, must comply with the heat release rate testing provisions of §25.853(d) in effect March 6, 1995 (formerly §25.853(a-1) in effect on August 20, 1986)(see app. L of this part), if there is a substantially complete replacement of the cabin incomponents identified terior §25.853(d), on or after that date, except that the total heat release over the first 2 minutes of sample exposure shall not exceed 100 kilowatt-minutes per square meter and the peak heat release rate must not exceed 100 kilowatts per square meter. - (ii) Substantially complete replacement of the cabin interior on or after August 20, - 1990. Each airplane that was type certificated after January 1, 1958, and has a passenger capacity of 20 or more, must comply with the heat release rate and smoke testing provisions of \$25.853(d) in effect March 6, 1995 (formerly \$25.853(a-1) in effect on September 26, 1988)(see app. L of this part), if there is a substantially complete replacement of the cabin interior components identified in \$25.853(d), on or after August 20, 1990. - (4) Contrary provisions of this section notwithstanding, the Manager of the Transport Airplane Directorate, Aircraft Certification Service, Federal Aviation Administration, may authorize deviation from the requirements of paragraph (a)(1)(i), (a)(1)(ii), (a)(3)(i), or (a)(3)(ii) of this section for specific components of the cabin interior that do not meet applicable flammability and smoke emission requirements, if the determination is made that special circumstances exist that make compliance impractical. Such grants of deviation will be limited to those airplanes manufactured within 1 year after the applicable date specified in this section and those airplanes in which the interior is replaced within 1 year of that date. A request for such grant of deviation must include a thorough and accurate analysis of each component subject to §25.853(a-1), the steps being taken to achieve compliance, and, for the few components for which timely compliance will not be achieved, credible reasons for such noncompliance. - (5) Contrary provisions of this section notwithstanding, galley carts and galley standard containers that do not meet the flammability and smoke emission requirements of §25.853(d) in effect March 6, 1995 (formerly §25.853(a-1)) (see app. L of this part) may be used in airplanes that must meet the requirements of paragraphs (a)(1)(i), (a)(1)(ii), (a)(3)(i), or (a)(3)(ii) of this section, provided the galley carts or standard containers were manufactured prior to March 6, 1995. - (b) Seat cushions. Seat cushions, except those on flight crewmember seats, in each compartment occupied by crew or passengers, must comply with the requirements pertaining to seat cushions in §25.853(c) effective on November 26, 1984, on each airplane as follows: - (1) Each transport category airplane type certificated after January 1, 1958; and - (2) On or after December 20, 2010, each nontransport category airplane type certificated after December 31, 1964. - (c) All interior materials; airplanes type certificated in accordance with SFAR No. 41 of 14 CFR part 21. No person may operate an airplane that conforms to an amended or supplemental type certificate issued in accordance with SFAR No. 41 of 14 CFR part 21 for a maximum certificated takeoff weight in excess of 12,500 pounds unless the airplane meets the compartment interior requirements set forth in §25.853(a) in effect March 6, 1995 (formerly §25.853(a), (b), (b-1), (b-2), and (b-3) of this chapter in effect on September 26, 1978)(see app. L of this part). - (d) All interior materials; other airplanes. For each material or seat cushion to which a requirement in paragraphs (a), (b), or (c) of this section does not apply, the material and seat cushion in each compartment used by the crewmembers and passengers must meet the applicable requirement under which the airplane was type certificated. - (e) Thermal/acoustic insulation materials. For transport category airplanes type certificated after January 1 1958: - (1) For airplanes manufactured before September 2, 2005, when thermal/acoustic insulation is installed in the fuse-lage as replacements after September 2, 2005, the insulation must meet the flame propagation requirements of §25.856 of this chapter, effective September 2, 2003, if it is: - (i) Of a blanket construction or - (ii) Installed around air ducting. - (2) For airplanes manufactured after September 2, 2005, thermal/acoustic insulation materials installed in the fuselage must meet the flame propagation requirements of §25.856 of this chapter, effective September 2, 2003. - (3) For airplanes with a passenger capacity of 20 or greater, manufactured after September 2, 2009, thermal/acoustic insulation materials installed in the lower half of the fuselage must meet the flame penetration resistance requirements of §25.856 of this chapter, effective September 2, 2003. [Doc. No. 28154, 60 FR 65930, Dec. 20, 1995, as amended by Amdt. 121–301, 68 FR 45083, July 31, 2003; Amdt. 121–320, 70 FR 77752, Dec. 30, 2005; Amdt. 121–330, 72 FR 1442, Jan. 12, 2007] ### §121.313 Miscellaneous equipment. No person may conduct any operation unless the following equipment is installed in the airplane: - (a) If protective fuses are installed on an airplane, the number of spare fuses approved for that airplane and
appropriately described in the certificate holder's manual. - (b) A windshield wiper or equivalent for each pilot station. - (c) A power supply and distribution system that meets the requirements of §§ 25.1309, 25.1331, 25.1351(a) and (b)(1) through (4), 25.1353, 25.1355, and 25.1431(b) or that is able to produce and distribute the load for the required instruments and equipment, with use of an external power supply if any one power source or component of the power distribution system fails. The use of common elements in the system may be approved if the Administrator finds that they are designed to be reasonably protected against malfunctioning. Engine-driven sources of energy, when used, must be on separate engines. - (d) A means for indicating the adequacy of the power being supplied to required flight instruments. - (e) Two independent static pressure systems, vented to the outside atmospheric pressure so that they will be least affected by air flow variation or moisture or other foreign matter, and installed so as to be airtight except for the vent. When a means is provided for transferring an instrument from its primary operating system to an alternate system, the means must include a positive positioning control and must be marked to indicate clearly which system is being used. - (f) A door between the passenger and pilot compartments (i.e., flightdeck door), with a locking means to prevent passengers from opening it without the pilot's permission, except that nontransport category airplanes certificated after December 31, 1964, are not required to comply with this para- - graph. For airplanes equipped with a crew rest area having separate entries from the flightdeck and the passenger compartment, a door with such a locking means must be provided between the crew rest area and the passenger compartment. - (g) A key for each door that separates a passenger compartment from another compartment that has emergency exit provisions. Except for flightdeck doors, a key must be readily available for each crewmember. Except as provided below, no person other than a person who is assigned to perform duty on the flightdeck may have a key to the flightdeck door. Before April 22, 2003, any crewmember may have a key to the flightdeck door but only if the flightdeck door has an internal flightdeck locking device installed, operative, and in use. Such "internal flightdeck locking device" has to be designed so that it can only be unlocked from inside the flightdeck. - (h) A placard on each door that is the means of access to a required passenger emergency exit, to indicate that it must be open during takeoff and landing. - (i) A means for the crew, in an emergency to unlock each door that leads to a compartment that is normally accessible to passengers and that can be locked by passengers. - (j) After April 9, 2003, for airplanes required by paragraph (f) of this section to have a door between the passenger and pilot or crew rest compartments, and for transport category, all-cargo airplanes that have a door installed between the pilot compartment and any other occupied compartment on January 15, 2002; - (1) After April 9, 2003, for airplanes required by paragraph (f) of this section to have a door between the passenger and pilot or crew rest compartments. - (i) Each such door must meet the requirements of §25.795(a)(1) and (2) in effect on January 15, 2002; and - (ii) Each operator must establish methods to enable a flight attendant to enter the pilot compartment in the event that a flightcrew member becomes incapacitated. Any associated signal or confirmation system must be operable by each flightcrew member from that flightcrew member's duty station. (2) After October 1, 2003, for transport category, all-cargo airplanes that had a door installed between the pilot compartment and any other occupied compartment on or after January 15, 2002, each such door must meet the requirements of §25.795(a)(1) and (2) in effect on January 15, 2002; or the operator must implement a security program approved by the Transportation Security Administration (TSA) for the operation of all airplanes in that operator's fleet. (k) Except for all-cargo operations as defined in §119.3 of this chapter, for all passenger-carrying airplanes that require a lockable flightdeck door in accordance with paragraph (f) of this section, a means to monitor from the flightdeck side of the door the area outside the flightdeck door to identify persons requesting entry and to detect suspicious behavior and potential threats. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964, as amended by Amdt. 121–5, 30 FR 6113, Apr. 30, 1965; Amdt. 121–251, 60 FR 65931, Dec. 20, 1995; Amdt. 121–288, 67 FR 2127, Jan. 15, 2002; Amdt. 121–299, 68 FR 42881, July 18, 2003; Amdt. 121–334, 72 FR 45635, Aug. 15, 2007] ### § 121.314 Cargo and baggage compartments. For each transport category airplane type certificated after January 1, 1958: - (a) Each Class C or Class D compartment, as defined in §25.857 of this Chapter in effect on June 16, 1986 (see Appendix L to this part), that is greater than 200 cubic feet in volume must have ceiling and sidewall liner panels which are constructed of: - (1) Glass fiber reinforced resin: - (2) Materials which meet the test requirements of part 25, appendix F, part III of this chapter; or - (3) In the case of liner installations approved prior to March 20, 1989, aluminum. - (b) For compliance with paragraph (a) of this section, the term "liner" includes any design feature, such as a joint or fastener, which would affect the capability of the liner to safely contain a fire. - $\left(c\right)$ After March 19, 2001, each Class D compartment, regardless of volume, must meet the standards of §§25.857(c) and 25.858 of this Chapter for a Class C compartment unless the operation is an all-cargo operation in which case each Class D compartment may meet the standards in §25.857(e) for a Class E compartment. - (d) Reports of conversions and retrofits. (1) Until such time as all Class D compartments in aircraft operated under this part by the certificate have been converted or retrofitted with appropriate detection and suppression systems, each certificate holder must submit written progress reports to the FAA that contain the information specified below. - (i) The serial number of each airplane listed in the operations specifications issued to the certificate holder for operation under this part in which all Class D compartments have been converted to Class C or Class E compartments; - (ii) The serial number of each airplane listed in the operations specification issued to the certificate holder for operation under this part, in which all Class D compartments have been retrofitted to meet the fire detection and suppression requirements for Class C or the fire detection requirements for Class E: and - (iii) The serial number of each airplane listed in the operations specifications issued to the certificate holder for operation under this part that has at least one Class D compartment that has not been converted or retrofitted. - (2) The written report must be submitted to the Certificate Holding District Office by July 1, 1998, and at each three-month interval thereafter. [Doc. No. 28937, 63 FR 8049, Feb. 17, 1998] #### § 121.315 Cockpit check procedure. - (a) Each certificate holder shall provide an approved cockpit check procedure for each type of aircraft. - (b) The approved procedures must include each item necessary for flight crewmembers to check for safety before starting engines, taking off, or landing, and in engine and systems emergencies. The procedures must be designed so that a flight crewmember will not need to rely upon his memory for items to be checked. (c) The approved procedures must be readily usable in the cockpit of each aircraft and the flight crew shall follow them when operating the aircraft. #### §121.316 Fuel tanks. Each turbine powered transport category airplane operated after October 30, 1991, must meet the requirements of §25.963(e) of this chapter in effect on October 30, 1989. [Doc. No. 25614, 54 FR 40354, Sept. 29, 1989] # § 121.317 Passenger information requirements, smoking prohibitions, and additional seat belt requirements. - (a) Except as provided in paragraph (l) of this section, no person may operate an airplane unless it is equipped with passenger information signs that meet the requirements of §25.791 of this chapter. Except as provided in paragraph (l) of this section, the signs must be constructed so that the crewmembers can turn them on and off. - (b) Except as provided in paragraph (1) of this section, the "Fasten Seat Belt" sign shall be turned on during any movement on the surface, for each takeoff, for each landing, and at any other time considered necessary by the pilot in command. - (c) No person may operate an airplane on a flight on which smoking is prohibited by part 252 of this title unless either the "No Smoking" passenger information signs are lighted during the entire flight, or one or more "No Smoking" placards meeting the requirements of §25.1541 of this chapter are posted during the entire flight segment. If both the lighted signs and the placards are used, the signs must remain lighted during the entire flight segment. - (d) No person may operate a passenger-carrying airplane under this part unless at least one legible sign or placard that reads "Fasten Seat Belt While Seated" is visible from each passenger seat. These signs or placards need not meet the requirements of paragraph (a) of this section. - (e) No person may operate an airplane unless there is installed in each lavatory a sign or placard that reads: "Federal law provides for a penalty of up to \$2,000 for tampering with the - smoke detector installed in this lavatory." These signs or placards need not meet the requirements of paragraph (a) of this section. - (f) Each passenger required by §121.311(b) to occupy a seat or berth shall fasten
his or her safety belt about him or her and keep it fastened while the "Fasten Seat Belt" sign is lighted. - (g) No person may smoke while a "No Smoking" sign is lighted or while "No Smoking" placards are posted, except as follows: - (1) Supplemental operations. The pilot in command of an airplane engaged in a supplemental operation may authorize smoking on the flight deck (if it is physically separated from any passenger compartment), but not in any of the following situations: - (i) During airplane movement on the surface or during takeoff or landing; - (ii) During scheduled passenger-carrying public charter operations conducted under part 380 of this title; or - (iii) During any operation where smoking is prohibited by part 252 of this title or by international agreement. - (2) Certain intrastate domestic operations. Except during airplane movement on the surface or during takeoff or landing, a pilot in command of an airplane engaged in a domestic operation may authorize smoking on the flight deck (if it is physically separated from the passenger compartment) if— - (i) Smoking on the flight deck is not otherwise prohibited by part 252 of this title: - (ii) The flight is conducted entirely within the same State of the United States (a flight from one place in Hawaii to another place in Hawaii through the airspace over a place outside of Hawaii is not entirely within the same State); and - (iii) The airplane is either not turbojet-powered or the airplane is not capable of carrying at least 30 passengers. - (h) No person may smoke in any airplane lavatory. - (i) No person may tamper with, disable, or destroy any smoke detector installed in any airplane layatory. - (j) On flight segments other than those described in paragraph (c) of this section, the "No Smoking" sign must be turned on during any movement on the surface, for each takeoff, for each landing, and at any other time considered necessary by the pilot in command. - (k) Each passenger shall comply with instructions given him or her by a crewmember regarding compliance with paragraphs (f), (g), (h), and (l) of this section. - (1) A certificate holder may operate a nontransport category airplane type certificated after December 31, 1964, that is manufactured before December 20, 1997, if it is equipped with at least one placard that is legible to each person seated in the cabin that states "Fasten Seat Belt," and if, during any movement on the surface, for each takeoff, for each landing, and at any other time considered necessary by the pilot in command, a crewmember orally instructs the passengers to fasten their seat belts. [Doc. No. 25590, 53 FR 12361, Apr. 13, 1988, as amended by Amdt. 121–196, 53 FR 44182, Nov. 2, 1988; Amdt. 121–213, 55 FR 8367, Mar. 7, 1990; Amdt. 121–230, 57 FR 42673, Sept. 15, 1992; Amdt. 121–251, 60 FR 65931, Dec. 20, 1995; Amdt. 121–256, 61 FR 30434, June 14, 1996; Amdt. 121–277, 65 FR 36779, June 9, 2000] #### §121.318 Public address system. No person may operate an airplane with a seating capacity of more than 19 passengers unless it is equipped with a public address system which— - (a) Is capable of operation independent of the crewmember interphone system required by §121.319, except for handsets, headsets, microphones, selector switches, and signaling devices; - (b) Is approved in accordance with §21.305 of this chapter; - (c) Is accessible for immediate use from each of two flight crewmember stations in the pilot compartment; - (d) For each required floor-level passenger emergency exit which has an adjacent flight attendant seat, has a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted verbal communication between seated flight attendants: - (e) Is capable of operation within 10 seconds by a flight attendant at each of those stations in the passenger com- partment from which its use is accessible; - (f) Is audible at all passenger seats, lavatories, and flight attendant seats and work stations; and - (g) For transport category airplanes manufactured on or after November 27, 1990, meets the requirements of §25.1423 of this chapter. [Doc. No. 24995, 54 FR 43926, Oct. 27, 1989] ### § 121.319 Crewmember interphone system. - (a) No person may operate an airplane with a seating capacity of more than 19 passengers unless the airplane is equipped with a crewmember interphone system that: - (1) [Reserved] - (2) Is capable of operation independent of the public address system required by §121.318(a) except for handsets, headsets, microphones, selector switches, and signaling devices; and - (3) Meets the requirements of paragraph (b) of this section. - (b) The crewmember interphone system required by paragraph (a) of this section must be approved in accordance with §21.305 of this chapter and meet the following requirements: - (1) It must provide a means of twoway communication between the pilot compartment and— - (i) Each passenger compartment; and - (ii) Each galley located on other than the main passenger deck level. - (2) It must be accessible for immediate use from each of two flight crewmember stations in the pilot compartment; - (3) It must be accessible for use from at least one normal flight attendant station in each passenger compartment; - (4) It must be capable of operation within 10 seconds by a flight attendant at those stations in each passenger compartment from which its use is accessible; and - (5) For large turbojet-powered airplanes: - (i) It must be accessible for use at enough flight attendant stations so that all floor-level emergency exits (or entryways to those exits in the case of exits located within galleys) in each passenger compartment are observable from one or more of those stations so equipped; - (ii) It must have an alerting system incorporating aural or visual signals for use by flight crewmembers to alert flight attendants and for use by flight attendants to alert flight crewmembers; - (iii) The alerting system required by paragraph (b)(5)(ii) of this section must have a means for the recipient of a call to determine whether it is a normal call or an emergency call; and - (iv) When the airplane is on the ground, it must provide a means of two-way communication between ground personnel and either of at least two flight crewmembers in the pilot compartment. The interphone system station for use by ground personnel must be so located that personnel using the system may avoid visible detection from within the airplane. [Doc. No. 10865, 38 FR 21494, Aug. 9, 1973, as amended by Amdt. 121–121, 40 FR 42186, Sept. 11, 1975; Amdt. 121–149, 43 FR 50602, Oct. 30, 1978; Amdt. 121–178, 47 FR 13316, Mar. 29, 1982; Amdt. 121–253, 61 FR 2611, Jan. 26, 1996] ### §121.321 [Reserved] ### § 121.323 Instruments and equipment for operations at night. No person may operate an airplane at night under this part unless it is equipped with the following instruments and equipment in addition to those required by §§121.305 through 121.321 and 121.803: - (a) Position lights. - (b) An anti-collision light. - (c) Two landing lights, except that only one landing light is required for nontransport category airplanes type certificated after December 31, 1964. - (d) Instrument lights providing enough light to make each required instrument, switch, or similar instrument, easily readable and installed so that the direct rays are shielded from the flight crewmembers' eyes and that no objectionable reflections are visible to them. There must be a means of controlling the intensity of illumination unless it is shown that nondimming instrument lights are satisfactory. - (e) An airspeed-indicating system with heated pitot tube or equivalent means for preventing malfunctioning due to icing. (f) A sensitive altimeter. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964, as amended by Amdt. 121–251, 60 FR 65932, Dec. 20, 1995; Amdt. 121–281, 66 FR 19043, Apr. 12, 20011 # § 121.325 Instruments and equipment for operations under IFR or overthe-top. No person may operate an airplane under IFR or over-the-top conditions under this part unless it is equipped with the following instruments and equipment, in addition to those required by §§ 121.305 through 121.321 and 121.803: - (a) An airspeed indicating system with heated pitot tube or equivalent means for preventing malfunctioning due to icing. - (b) A sensitive altimeter. - (c) Instrument lights providing enough light to make each required instrument, switch, or similar instrument, easily readable and so installed that the direct rays are shielded from the flight crewmembers' eyes and that no objectionable reflections are visible to them, and a means of controlling the intensity of illumination unless it is shown that nondimming instrument lights are satisfactory. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964, as amended at Amdt. 121–281, 66 FR 19043, Apr. 12, 2001] ### § 121.327 Supplemental oxygen: Reciprocating engine powered airplanes. - (a) General. Except where supplemental oxygen is provided in accordance with §121.331, no person may operate an airplane unless supplemental oxygen is furnished and used as set forth in paragraphs (b) and (c) of this section. The amount of supplemental oxygen required for a particular operation is determined on the basis of flight altitudes and flight duration, consistent with the operation procedures established for each operation and route. - (b) Crewmembers. (1) At cabin pressure altitudes above 10,000 feet up to and including 12,000 feet, oxygen must be provided for, and used by, each member of the flight crew on flight deck duty, and must be provided for other crewmembers, for that part of the flight at those altitudes that is of more than 30 minutes duration. - (2) At cabin pressure altitudes above 12,000 feet, oxygen must be provided for, and used by, each member of the flight crew on flight deck duty, and must be provided for other
crewmembers, during the entire flight time at those altitudes. - (3) When a flight crewmember is required to use oxygen, he must use it continuously, except when necessary to remove the oxygen mask or other dispenser in connection with his regular duties. Standby crewmembers who are on call or are definitely going to have flight deck duty before completing the flight must be provided with an amount of supplemental oxygen equal to that provided for crewmembers on duty other than on flight deck duty. If a standby crewmember is not on call and will not be on flight deck duty during the remainder of the flight, he is considered to be a passenger for the purposes of supplemental oxygen reauirements. - (c) *Passengers*. Each certificate holder shall provide a supply of oxygen, approved for passenger safety, in accordance with the following: - (1) For flights of more than 30 minutes duration at cabin pressure altitudes above 8,000 feet up to and including 14,000 feet, enough oxygen for 30 minutes for 10 percent of the passengers. - (2) For flights at cabin pressure altitudes above 14,000 feet up to and including 15,000 feet, enough oxygen for that part of the flight at those altitudes for 30 percent of the passengers. - (3) For flights at cabin pressure altitudes above 15,000 feet, enough oxygen for each passenger carried during the entire flight at those altitudes. - (d) For the purposes of this subpart cabin pressure altitude means the pressure altitude corresponding with the pressure in the cabin of the airplane, and flight altitude means the altitude above sea level at which the airplane is operated. For airplanes without pressurized cabins, "cabin pressure altitude" and "flight altitude" mean the same thing. # § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. - (a) General. When operating a turbine engine powered airplane, each certificate holder shall equip the airplane with sustaining oxygen and dispensing equipment for use as set forth in this section: - (1) The amount of oxygen provided must be at least the quantity necessary to comply with paragraphs (b) and (c) of this section. - (2) The amount of sustaining and first-aid oxygen required for a particular operation to comply with the rules in this part is determined on the basis of cabin pressure altitudes and flight duration, consistent with the operating procedures established for each operation and route. - (3) The requirements for airplanes with pressurized cabins are determined on the basis of cabin pressure altitude and the assumption that a cabin pressurization failure will occur at the altitude or point of flight that is most critical from the standpoint of oxygen need, and that after the failure the airplane will descend in accordance with the emergency procedures specified in the Airplane Flight Manual, without exceeding its operating limitations, to a flight altitude that will allow successful termination of the flight. - (4) Following the failure, the cabin pressure altitude is considered to be the same as the flight altitude unless it is shown that no probable failure of the cabin or pressurization equipment will result in a cabin pressure altitude equal to the flight altitude. Under those circumstances, the maximum cabin pressure altitude attained may be used as a basis for certification or determination of oxygen supply, or both. - (b) *Crewmembers*. Each certificate holder shall provide a supply of oxygen for crewmembers in accordance with the following: - (1) At cabin pressure altitudes above 10,000 feet, up to and including 12,000 feet, oxygen must be provided for and used by each member of the flight crew on flight deck duty and must be provided for other crewmembers for that part of the flight at those altitudes that is of more than 30 minutes duration. - (2) At cabin pressure altitudes above 12,000 feet, oxygen must be provided for, and used by, each member of the flight crew on flight deck duty, and must be provided for other crewmembers during the entire flight at those altitudes. - (3) When a flight crewmember is required to use oxygen, he must use it continuously except when necessary to remove the oxygen mask or other dispenser in connection with his regular duties. Standby crewmembers who are on call or are definitely going to have flight deck duty before completing the flight must be provided with an amount of supplemental oxygen equal to that provided for crewmembers on duty other than on flight duty. If a standby crewmember is not on call and will not be on flight deck duty during the remainder of the flight, he is considered to be a passenger for the purposes of supplemental oxygen require- - (c) *Passengers*. Each certificate holder shall provide a supply of oxygen for passengers in accordance with the following: - (1) For flights at cabin pressure altitudes above 10,000 feet, up to and including 14,000 feet, enough oxygen for that part of the flight at those altitudes that is of more than 30 minutes duration, for 10 percent of the passengers. - (2) For flights at cabin pressure altitudes above 14,000 feet, up to and including 15,000 feet, enough oxygen for that part of the flight at those altitudes for 30 percent of the passengers. - (3) For flights at cabin pressure altitudes above 15,000 feet, enough oxygen for each passenger carried during the entire flight at those altitudes. # § 121.331 Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered airplanes. (a) When operating a reciprocating engine powered airplane pressurized cabin, each certificate holder shall equip the airplane to comply with paragraphs (b) through (d) of this section in the event of cabin pressurization failure. - (b) For crewmembers. When operating at flight altitudes above 10,000 feet, the certificate holder shall provide enough oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour supply for each flight crewmember on flight deck duty. The required two hours supply is that quantity of oxygen necessary for a constant rate of descent from the airplane's maximum certificated operating altitude to 10,000 feet in ten minutes and followed by 110 minutes at 10,000 feet. The oxygen required by §121.337 may be considered in determining the supplemental breathing supply required for flight crewmembers on flight deck duty in the event of cabin pressurization failure. - (c) For passengers. When operating at flight altitudes above 8,000 feet, the certificate holder shall provide oxygen as follows: - (1) When an airplane is not flown at a flight altitude above flight level 250, enough oxygen for 30 minutes for 10 percent of the passengers, if at any point along the route to be flown the airplane can safely descend to a flight altitude of 14,000 feet or less within four minutes. - (2) If the airplane cannot descend to a flight altitude of 14,000 feet or less within four minutes, the following supply of oxygen must be provided: - (i) For that part of the flight that is more than four minutes duration at flight altitudes above 15,000 feet, the supply required by §121.327(c)(3). - (ii) For that part of the flight at flight altitudes above 14,000 feet, up to and including 15,000 feet, the supply required by \$121.327(c)(2). - (iii) For flight at flight altitudes above 8,000 feet up to and including 14,000 feet, enough oxygen for 30 minutes for 10 percent of the passengers. - (3) When an airplane is flown at a flight altitude above flight level 250, enough oxygen for 30 minutes for 10 percent of the passengers for the entire flight (including emergency descent) above 8,000 feet, up to and including 14,000 feet, and to comply with \$121.327(c) (2) and (3) for flight above 14,000 feet. - (d) For the purposes of this section it is assumed that the cabin pressurization failure occurs at a time during flight that is critical from the standpoint of oxygen need and that after the failure the airplane will descend, without exceeding its normal operating limitations, to flight altitudes allowing safe flight with respect to terrain clearance. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964, as amended by Amdt. 121–132, 41 FR 55475, Dec. 20, 1976] #### § 121.333 Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. - (a) General. When operating a turbine engine powered airplane with a pressurized cabin, the certificate holder shall furnish oxygen and dispensing equipment to comply with paragraphs (b) through (e) of this section in the event of cabin pressurization failure. - (b) Crewmembers. When operating at flight altitudes above 10,000 feet, the certificate holder shall supply enough oxygen to comply with §121.329, but not less than a two-hour supply for each flight crewmember on flight deck duty. The required two hours supply is that quantity of oxygen necessary for a constant rate of descent from the airplane's maximum certificated operating altitude to 10,000 feet in ten minutes and followed by 110 minutes at 10,000 feet. The oxygen required in the event of cabin pressurization failure by §121.337 may be included in determining the supply required for flight crewmembers on flight deck duty. - (c) Use of oxygen masks by flight crewmembers. (1) When operating at flight altitudes above flight level 250, each flight crewmember on flight deck duty must be provided with an oxygen mask so designed that it can be rapidly placed on his face from its ready position, properly secured, sealed, and supplying oxygen upon demand; and so designed that after being placed on the face it does not prevent immediate communication between the flight crewmember and other crewmembers over the airplane intercommunication system. When it is not being used at flight altitudes above flight level 250, the oxygen mask must be kept in condition for ready use and located so as to be within the immediate reach of the flight crewmember
while at his duty station. - (2) When operating at flight altitudes above flight level 250, one pilot at the controls of the airplane shall at all times wear and use an oxygen mask secured, sealed, and supplying oxygen, in accordance with the following: - (i) The one pilot need not wear and use an oxygen mask at or below the following flight levels if each flight crewmember on flight deck duty has a quick-donning type of oxygen mask that the certificate holder has shown can be placed on the face from its ready position, properly secured, sealed, and supplying oxygen upon demand, with one hand and within five seconds: - (A) For airplanes having a passenger seat configuration of more than 30 seats, excluding any required crewmember seat, or a payload capacity of more than 7,500 pounds, at or below flight level 410. - (B) For airplanes having a passenger seat configuration of less than 31 seats, excluding any required crewmember seat, and a payload capacity of 7,500 pounds or less, at or below flight level 350. - (ii) Whenever a quick-donning type of oxygen mask is to be used under this section, the certificate holder shall also show that the mask can be put on without disturbing eye glasses and without delaying the flight crewmember from proceeding with his assigned emergency duties. The oxygen mask after being put on must not prevent immediate communication between the flight crewmember and other crewmembers over the airplane intercommunication system. - (3) Notwithstanding paragraph (c)(2) of this section, if for any reason at any time it is necessary for one pilot to leave his station at the controls of the airplane when operating at flight altitudes above flight level 250, the remaining pilot at the controls shall put on and use his oxygen mask until the other pilot has returned to his duty station. - (4) Before the takeoff of a flight, each flight crewmember shall personally preflight his oxygen equipment to insure that the oxygen mask is functioning, fitted properly, and connected to appropriate supply terminals, and that the oxygen supply and pressure are adequate for use. - (d) Use of portable oxygen equipment by cabin attendants. After November 28, 2005 each mask used for portable oxygen equipment must be connected to its oxygen supply. Above flight level 250, one of the following is required: - (1) Each attendant shall carry portable oxygen equipment with a 15 minute supply of oxygen; or - (2) There must be sufficient portable oxygen equipment (including masks and spare outlets) distributed throughout the cabin so that such equipment is immediately available to each attendant, regardless of their location in the cabin; or - (3) There are sufficient spare outlets and masks distributed throughout the cabin to ensure immediate availability of oxygen to each cabin attendant, regardless of their location in the cabin. - (e) Passenger cabin occupants. When the airplane is operating at flight altitudes above 10,000 feet, the following supply of oxygen must be provided for the use of passenger cabin occupants: - (1) When an airplane certificated to operate at flight altitudes up to and including flight level 250, can at any point along the route to be flown, descend safely to a flight altitude of 14,000 feet or less within four minutes, oxygen must be available at the rate prescribed by this part for a 30-minute period for at least 10 percent of the passenger cabin occupants. - (2) When an airplane is operated at flight altitudes up to and including flight level 250 and cannot descend safely to a flight altitude of 14,000 feet within four minutes, or when an airplane is operated at flight altitudes above flight level 250, oxygen must be available at the rate prescribed by this part for not less than 10 percent of the passenger cabin occupants for the entire flight after cabin depressurization, at cabin pressure altitudes above 10,000 feet up to and including 14,000 feet and, as applicable, to allow compliance with §121.329(c) (2) and (3), except that there must be not less than a 10-minute supply for the passenger cabin occupants. - (3) For first-aid treatment of occupants who for physiological reasons might require undiluted oxygen fol- lowing descent from cabin pressure altitudes above flight level 250, a supply of oxygen in accordance with the requirements of §25.1443(d) must be provided for two percent of the occupants for the entire flight after cabin depressurization at cabin pressure altitudes above 8,000 feet, but in no case to less than one person. An appropriate number of acceptable dispensing units, but in no case less than two, must be provided, with a means for the cabin attendants to use this supply. (f) Passenger briefing. Before flight is conducted above flight level 250, a crewmember shall instruct the passengers on the necessity of using oxygen in the event of cabin depressurization and shall point out to them the location and demonstrate the use of the oxygen-dispensing equipment. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964, as amended by Amdt. 121–11, 30 FR 12466, Sept. 30, 1965; Amdt. 121–132, 41 FR 55475, Dec. 20, 1976; Amdt. 121–262, 62 FR 13256, Mar. 19, 1997; 62 FR 15570, Apr. 1, 1997; Amdt. 121–306, 69 FR 62789, Oct. 27, 2004] #### §121.335 Equipment standards. - (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with §121.327 must meet the standards established in section 4b.651 of the Civil Air Regulations as in effect on July 20, 1950, except that if the certificate holder shows full compliance with those standards to be impracticable, the Administrator may authorize any change in those standards that he finds will provide an equivalent level of safety. - (b) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply of oxygen necessary to comply with §§ 121.329 and 121.333 must meet the standards established in section 4b.651 of the Civil Air Regulations as in effect on September 1, 1958, except that if the certificate holder shows full compliance with those standards to be impracticable, the Administrator may authorize any changes in those standards that he finds will provide an equivalent level of safety. ### § 121.337 Protective breathing equipment. - (a) The certificate holder shall furnish approved protective breathing equipment (PBE) meeting the equipment, breathing gas, and communication requirements contained in paragraph (b) of this section. - (b) Pressurized and nonpressurized cabin airplanes. Except as provided in paragraph (f) of this section, no person may operate an airplane unless protective breathing equipment meeting the requirements of this section is provided as follows: - (1) General. The equipment must protect the flightcrew from the effects of smoke, carbon dioxide or other harmful gases or an oxygen deficient environment caused by other than an airplane depressurization while on flight deck duty and must protect crewmembers from the above effects while combatting fires on board the airplane. - (2) The equipment must be inspected regularly in accordance with inspection guidelines and the inspection periods established by the equipment manufacturer to ensure its condition for continued serviceability and immediate readiness to perform its intended emergency purposes. The inspection periods may be changed upon a showing by the certificate holder that the changes would provide an equivalent level of safety. - (3) That part of the equipment protecting the eyes must not impair the wearer's vision to the extent that a crewmember's duties cannot be accomplished and must allow corrective glasses to be worn without impairment of vision or loss of the protection required by paragraph (b)(1) of this section. - (4) The equipment, while in use, must allow the flightcrew to communicate using the airplane radio equipment and to communicate by interphone with each other while at their assigned duty stations. The equipment, while in use, must also allow crewmember interphone communications between each of two flight crewmember stations in the pilot compartment and at least one normal flight attendant station in each passenger compartment. - (5) The equipment, while in use, must allow any crewmember to use the air- - plane interphone system at any of the flight attendant stations referred to in paragraph (b)(4) of this section. - (6) The equipment may also be used to meet the supplemental oxygen requirements of this part provided it meets the oxygen equipment standards of §121.335 of this part. - (7) Protective breathing gas duration and supply system equipment requirements are as follows: - (i) The equipment must supply breathing gas for 15 minutes at a pressure altitude of 8,000 feet for the following: - (A) Flight crewmembers while performing flight deck duties; and - (B) Crewmembers while combatting an in-flight fire. - (ii) The breathing gas system must be free from hazards in itself, in its method of operation, and in its effect upon other components. - (iii) For breathing gas systems other than chemical oxygen generators, there must be a means to allow the crew to readily determine, during the equipment preflight described in paragraph (c) of this section, that the gas supply is fully charged. - (iv) For each chemical oxygen generator, the supply system equipment must meet the requirements of §25.1450 (b) and (c) of this chapter. - (8) Smoke and fume protection. Protective breathing equipment with a fixed or portable breathing gas supply meeting the requirements of this section must be conveniently located on the flight deck and be easily accessible for immediate use by each required flight crewmember at his or her assigned duty station. - (9) Fire combatting. Except for non-transport category airplanes type certificated after December 31, 1964, protective breathing equipment with a portable breathing gas supply meeting the
requirements of this section must be easily accessible and conveniently located for immediate use by crewmembers in combatting fires as follows: - (i) One PBE is required for each hand fire extinguisher located for use in a galley other than a galley located in a passenger, cargo, or crew compartment. ### Federal Aviation Administration, DOT - (ii) One on the flight deck, except that the Administrator may authorize another location for this PBE if special circumstances exist that make compliance impractical and the proposed deviation would provide an equivalent level of safety. - (iii) In each passenger compartment, one for each hand fire extinguisher required by §121.309 of this part, to be located within 3 feet of each required hand fire extinguisher, except that the Administrator may authorize a deviation allowing locations of PBE more than 3 feet from required hand fire extinguisher locations if special circumstances exist that make compliance impractical and if the proposed deviation provides an equivalent level of safety. - (c) Equipment preflight. (1) Before each flight, each item of PBE at flight crewmember duty stations must be checked by the flight crewmember who will use the equipment to ensure that the equipment— - (i) For other than chemical oxygen generator systems, is functioning, is serviceable, fits properly (unless a universal-fit type), and is connected to supply terminals and that the breathing gas supply and pressure are adequate for use; and - (ii) For chemical oxygen generator systems, is serviceable and fits properly (unless a universal-fit type). - (2) Each item of PBE located at other than a flight crewmember duty station must be checked by a designated crewmember to ensure that each is properly stowed and serviceable, and, for other than chemical oxygen generator systems, the breathing gas supply is fully charged. Each certificate holder, in its operations manual, must designate at least one crewmember to perform those checks before he or she takes off in that airplane for his or her first flight of the day. [Doc. No. 24792, 52 FR 20957, June 3, 1987, as amended by Amdt. 121–204, 54 FR 22271, May 22, 1989; Amdt. 121–212, 55 FR 5551, Feb. 15, 1990; Amdt. 121–218, 55 FR 31565, Aug. 2, 1990; Amdt. 121–230, 57 FR 42674, Sept. 15, 1992; Amdt. 121–251, 60 FR 65932, Dec. 20, 1995; Amdt. 121–261, 61 FR 43921, Aug. 26, 1996] ### § 121.339 Emergency equipment for extended over-water operations. - (a) Except where the Administrator, by amending the operations specifications of the certificate holder, requires the carriage of all or any specific items of the equipment listed below for any overwater operation, or upon application of the certificate holder, the Administrator allows deviation for a particular extended overwater operation, no person may operate an airplane in extended overwater operations without having on the airplane the following equipment: - (1) A life preserver equipped with an approved survivor locator light, for each occupant of the airplane. - (2) Enough life rafts (each equipped with an approved survivor locator light) of a rated capacity and buoyancy to accommodate the occupants of the airplane. Unless excess rafts of enough capacity are provided, the buoyancy and seating capacity beyond the rated capacity of the rafts must accommodate all occupants of the airplane in the event of a loss of one raft of the largest rated capacity. - (3) At least one pyrotechnic signaling device for each life raft. - (4) An approved survival type emergency locator transmitter. Batteries used in this transmitter must be replaced (or recharged, if the battery is rechargeable) when the transmitter has been in use for more than 1 cumulative hour, or when 50 percent of their useful life (or for rechargeable batteries, 50 percent of their useful life of charge) has expired, as established by the transmitter manufacturer under its approval. The new expiration date for replacing (or recharging) the battery must be legibly marked on the outside of the transmitter. The battery useful life (or useful life of charge) requirements of this paragraph do not apply to batteries (such as water-activated batteries) that are essentially unaffected during probable storage intervals. - (b) The required life rafts, life preservers, and survival type emergency locator transmitter must be easily accessible in the event of a ditching without appreciable time for preparatory procedures. This equipment must be installed in conspicuously marked, approved locations. (c) A survival kit, appropriately equipped for the route to be flown, must be attached to each required life raft. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964, as amended by Amdt. 121–53, 34 FR 15244, Sept. 30, 1969; Amdt. 121–79, 36 FR 18724, Sept. 21, 1971; Amdt. 121–93, 37 FR 14294, June 19, 1972 Amdt. 121–106, 38 FR 22378, Aug. 20, 1973; Amdt. 121–149, 43 FR 50603, Oct. 30, 1978; Amdt. 121–158, 45 FR 38348, June 9, 1980; Amdt. 121–239, 59 FR 32057, June 21, 1994] #### § 121.340 Emergency flotation means. - (a) Except as provided in paragraph (b) of this section, no person may operate an airplane in any overwater operation unless it is equipped with life preservers in accordance with §121.339(a)(1) or with an approved flotation means for each occupant. This means must be within easy reach of each seated occupant and must be readily removable from the airplane. - (b) Upon application by the air carrier or commercial operator, the Administrator may approve the operation of an airplane over water without the life preservers or flotation means required by paragraph (a) of this section, if the air carrier or commercial operator shows that the water over which the airplane is to be operated is not of such size and depth that life preservers or flotation means would be required for the survival of its occupants in the event the flight terminates in that water. [Doc. No. 6713, 31 FR 1147, Jan. 28, 1966, as amended by Amdt. 121–25, 32 FR 3223, Feb. 24, 1967; Amdt. 121–251, 60 FR 65932, Dec. 20, 1995] ### § 121.341 Equipment for operations in icing conditions. (a) Except as permitted in paragraph (c)(2) of this section, unless an airplane is type certificated under the transport category airworthiness requirements relating to ice protection, or unless an airplane is a non-transport category airplane type certificated after December 31, 1964, that has the ice protection provisions that meet section 34 of appendix A of part 135 of this chapter, no person may operate an airplane in icing conditions unless it is equipped with means for the prevention or removal of ice on windshields, wings, empennage, propellers, and other parts of the airplane where ice formation will adversely affect the safety of the airplane. - (b) No person may operate an airplane in icing conditions at night unless means are provided for illuminating or otherwise determining the formation of ice on the parts of the wings that are critical from the standpoint of ice accumulation. Any illuminating that is used must be of a type that will not cause glare or reflection that would handicap crewmembers in the performance of their duties. - (c) Non-transport category airplanes type certificated after December 31, 1964. Except for an airplane that has ice protection provisions that meet section 34 of appendix A of part 135 of this chapter, or those for transport category airplane type certification, no person may operate— - (1) Under IFR into known or forecast light or moderate icing conditions; - (2) Under VFR into known light or moderate icing conditions; unless the airplane has functioning deicing anticing equipment protecting each propeller, windshield, wing, stabilizing or control surface, and each airspeed, altimeter, rate of climb, or flight attitude instrument system; or - (3) Into known or forecast severe icing conditions. - (d) If current weather reports and briefing information relied upon by the pilot in command indicate that the forecast icing condition that would otherwise prohibit the flight will not be encountered during the flight because of changed weather conditions since the forecast, the restrictions in paragraph (c) of this section based on forecast conditions do not apply. [Doc. No. 6258, 29 FR 18205, Dec. 31, 1964, as amended by Amdt. 121–251, 60 FR 65929, Dec. 20, 1995] #### § 121.342 Pitot heat indication systems. No person may operate a transport category airplane or, after December 20, 1999, a nontransport category airplane type certificated after December 31, 1964, that is equipped with a flight instrument pitot heating system unless the airplane is also equipped with an operable pitot heat indication system that complies §25.1326 of this chapter in effect on April 12, 1978. [Doc. No. 28154, 60 FR 65932, Dec. 20, 1995] #### §121.343 Flight data recorders. - (a) Except as provided in paragraphs (b), (c), (d), (e), and (f) of this section, no person may operate a large airplane that is certificated for operations above 25,000 feet altitude or is turbine-engine powered unless it is equipped with one or more approved flight recorders that record data from which the following may be determined within the ranges, accuracies, and recording intervals specified in appendix B of this part: - (1) Time; - (2) Altitude; - (3) Airspeed; - (4) Vertical acceleration; - (5) Heading; and - (6) Time of each radio transmission either to or from air traffic control. - (b) No person may operate a large airplane type certificated up to and including September 30, 1969, for operations above 25,000 feet altitude, or a turbine-engine powered airplane certificated before the same date, unless it is equipped before May 26, 1989 with one or more approved flight recorders that utilize a digital method of recording and storing data and a method of readily retrieving that data from the storage medium. The following information must be able to be determined within the ranges, accuracies, and recording
intervals specified in appendix B of this part: - (1) Time; - (2) Altitude; - (3) Airspeed; - (4) Vertical acceleration; - (5) Heading; and - (6) Time of each radio transmission either to or from air traffic control. - (c) Except as provided in paragraph (l) of this section, no person may operate an airplane specified in paragraph (b) of this section unless it is equipped, before May 26, 1995, with one or more approved flight recorders that utilize a digital method of recording and storing data and a method of readily retrieving that data from the storage medium. The following information must be able to be determined within the ranges, accuracies and recording intervals specified in appendix B of this part: - (1) Time; - (2) Altitude: - (3) Airspeed; - (4) Vertical acceleration; - (5) Heading; - (6) Time of each radio transmission either to or from air traffic control; - (7) Pitch attitude; - (8) Roll attitude; - (9) Longitudinal acceleration; - (10) Control column or pitch control surface position; and - (11) Thrust of each engine. - (d) No person may operate an airplane specified in paragraph (b) of this section that is manufactured after May 26, 1989, as well as airplanes specified in paragraph (a) of this section that have been type certificated after September 30, 1969, unless it is equipped with one or more approved flight recorders that utlitize a digital method of recording and storing data and a method of readily retrieving that data from the storage medium. The following information must be able to be determined within the ranges, accuracies, and recording intervals specified in appendix B of this part: - (1) Time; - (2) Altitude; - (3) Airspeed; - (4) Vertical acceleration; - (5) Heading; - (6) Time of each radio transmission either to or from air traffic control; - (7) Pitch attitude; - (8) Roll attitude; - (9) Longitudinal acceleration; - (10) Pitch trim position; - (11) Control column or pitch control surface position; - (12) Control wheel or lateral control surface position: - (13) Rudder pedal or yaw control surface position; - (14) Thrust of each engine; - (15) Position of each thrust reverser; - (16) Trailing edge flap or cockpit flap control position; and - (17) Leading edge flap or cockpit flap For the purpose of this section, manufactured means the point in time at which the airplane inspection acceptance records reflect that the airplane is complete and meets the FAA-approved type design data. - (e) After October 11, 1991, no person may operate a large airplane equipped with a digital data bus and ARINC 717 digital flight data acquisition unit (DFDAU) or equivalent unless it is equipped with one or more approved flight recorders that utilize a digital method of recording and storing data and a method of readily retrieving that data from the storage medium. Any parameters specified in appendix B of this part that are available on the digital data bus must be recorded within the ranges, accuracies, resolutions, and sampling intervals specified. - (f) After October 11, 1991, no person may operate an airplane specified in paragraph (b) of this section that is manufactured after October 11, 1991, nor an airplane specified in paragraph (a) of this section that has been type certificated after September 30, 1969, and manufactured after October 11, 1991, unless it is equipped with one or more flight recorders that utilize a digital method of recording and storing data and a method of readily retrieving that data from the storage medium. The parameters specified in appendix B of this part must be recorded within the ranges, accuracies, resolutions, and sampling intervals specified. - (g) Whenever a flight recorder required by this section is installed, it must be operated continuously from the instant the airplane begins the takeoff roll until it has completed the landing roll at an airport. - (h) Except as provided in paragraph (i) of this section, and except for recorded data erased as authorized in this paragraph, each certificate holder shall keep the recorded data prescribed in paragraph (a), (b), (c), or (d) of this section, as appropriate, until the airplane has been operated for at least 25 hours of the operating time specified in §121.359(a). A total of 1 hour of recorded data may be erased for the purpose of testing the flight recorder or the flight recorder system. Any erasure made in accordance with this paragraph must be of the oldest recorded data accumulated at the time of testing. Except as provided in paragraph (i) of this section, no record need be kept more than 60 days. - (i) In the event of an accident or occurrence that requires immediate notification of the National Transportation Safety Board under part 830 of its regulations and that results in termination of the flight, the certificate holder shall remove the recording media from the airplane and keep the recorded data required by paragraph (a), (b), (c), or (d) of this section, as appropriate, for at least 60 days or for a longer period upon the request of the Board or the Administrator. - (j) Each flight recorder required by this section must be installed in accordance with the requirements of §25.1459 of this chapter in effect on August 31, 1977. The correlation required by §25.1459(c) of this chapter need be established only on one airplane of any group of airplanes— - (1) That are of the same type; - (2) On which the model flight recorder and its installation are the same; and - (3) On which there is no difference in the type design with respect to the installation of those first pilot's instruments associated with the flight recorder. The most recent instrument calibration, including the recording medium from which this calibration is derived, and the recorder correlation must be retained by the certificate holder. - (k) Each flight recorder required by this section that records the data specified in paragraph (a), (b), (c), or (d) of this section, as appropriate, must have an approved device to assist in locating that recorder under water. - (1) No person may operate an airplane specified in paragraph (b) of this section that meets the Stage 2 noise levels of part 36 of this chapter and is subject to §91.801(c) of this chapter unless it is equipped with one or more approved flight data recorders that utilize a digital method of recording and storing data and a method of readily retrieving that data from the storage medium. The information specified in paragraphs (c)(1) through (c)(11) of this section must be able to be determined within the ranges, accuracies and recording intervals specified in appendix B of this part. In addition- ### Federal Aviation Administration, DOT - (1) This flight data recorder must be installed at the next heavy maintenance check after May 26, 1994, but no later than May 26, 1995. A heavy maintenance check is considered to be any time an aircraft is scheduled to be out of service for 4 or more days. - (2) By June 23, 1994, each carrier must submit to the FAA Flight Standards Service, Air Transportation Division (AFS-200), documentation listing those airplanes covered under this paragraph and evidence that it has ordered a sufficient number of flight data recorders to meet the May 26, 1995, compliance date for all aircraft on that list. - (3) After May 26, 1994, any aircraft that is modified to meet Stage 3 noise levels must have the flight data recorder described in paragraph (c) of this section installed before operating under this part. - (m) After August 20, 2001, this section applies only to the airplane models listed in §121.344(1)(2). All other airplanes must comply with the requirements of §121.344, as applicable. [Doc. No. 24418, 52 FR 9636, Mar. 25, 1987, as amended by Amdt. 121–197, 53 FR 26147, July 11, 1988; Amdt. 121–238, 59 FR 26900, May 24, 1994; Amdt. 121–338, 73 FR 12565, Mar. 7, 2008] ### § 121.344 Digital flight data recorders for transport category airplanes. - (a) Except as provided in paragraph (1) of this section, no person may operate under this part a turbine-enginepowered transport category airplane unless it is equipped with one or more approved flight recorders that use a digital method of recording and storing data and a method of readily retrieving that data from the storage medium. The operational parameters required to be recorded by digital flight data recorders required by this section are as follows: The phrase "when an information source is installed" following a parameter indicates that recording of that parameter is not intended to require a change in installed equipment: - (1) Time; - (2) Pressure altitude; - (3) Indicated airspeed: - (4) Heading—primary flight crew reference (if selectable, record discrete, true or magnetic); - (5) Normal acceleration (Vertical); - (6) Pitch attitude; - (7) Roll attitude; - (8) Manual radio transmitter keying, or CVR/DFDR synchronization reference: - (9) Thrust/power of each engine—primary flight crew reference; - (10) Autopilot engagement status; - (11) Longitudinal acceleration; - (12) Pitch control input: - (13) Lateral control input; - (14) Rudder pedal input; - (15) Primary pitch control surface position: - (16) Primary lateral control surface position; - (17) Primary yaw control surface position; - (18) Lateral acceleration; - (19) Pitch trim surface position or parameters of paragraph (a)(82) of this section if currently recorded; - (20) Trailing edge flap or cockpit flap control selection (except when parameters of paragraph (a)(85) of this section apply); - (21) Leading edge flap or cockpit flap control selection (except when parameters of paragraph (a)(86) of this section apply); - (22) Each Thrust reverser position (or equivalent for propeller airplane); - (23) Ground spoiler position or speed brake selection (except when parameters of paragraph (a)(87) of this section apply); - (24) Outside or total air temperature; - (25) Automatic Flight Control System (AFCS) modes and engagement status, including
autothrottle; - (26) Radio altitude (when an information source is installed): - (27) Localizer deviation, MLS Azimuth: - (28) Glideslope deviation, MLS Elevation: - (29) Marker beacon passage; - (30) Master warning; - (31) Air/ground sensor (primary airplane system reference nose or main gear); - (32) Angle of attack (when information source is installed): - (33) Hydraulic pressure low (each system); - (34) Ground speed (when an information source is installed); - (35) Ground proximity warning system: - (36) Landing gear position or landing gear cockpit control selection; - (37) Drift angle (when an information source is installed); - (38) Wind speed and direction (when an information source is installed); - (39) Latitude and longitude (when an information source is installed); - (40) Stick shaker/pusher (when an information source is installed); - (41) Windshear (when an information source is installed): - (42) Throttle/power lever position; - (43) Additional engine parameters (as designated in Appendix M of this part); - (44) Traffic alert and collision avoidance system; - (45) DME 1 and 2 distances; - (46) Nav 1 and 2 selected frequency; - (47) Selected barometric setting (when an information source is installed): - (48) Selected altitude (when an information source is installed); - (49) Selected speed (when an information source is installed); - (50) Selected mach (when an information source is installed): - tion source is installed); (51) Selected vertical speed (when an - information source is installed); (52) Selected heading (when an information source is installed): - (53) Selected flight path (when an information source is installed): - (54) Selected decision height (when an information source is installed); - (55) EFIS display format; - (56) Multi-function/engine/alerts display format: - (57) Thrust command (when an information source is installed); - (58) Thrust target (when an information source is installed); - (59) Fuel quantity in CG trim tank (when an information source is installed); - (60) Primary Navigation System Reference; - (61) Icing (when an information source is installed); - (62) Engine warning each engine vibration (when an information source is installed): - (63) Engine warning each engine over temp. (when an information source is installed); - (64) Engine warning each engine oil pressure low (when an information source is installed); - (65) Engine warning each engine over speed (when an information source is installed); - (66) Yaw trim surface position; - (67) Roll trim surface position; - (68) Brake pressure (selected system); - (69) Brake pedal application (left and right); - (70) Yaw or sideslip angle (when an information source is installed); - (71) Engine bleed valve position (when an information source is installed): - (72) De-icing or anti-icing system selection (when an information source is installed); - (73) Computed center of gravity (when an information source is installed): - (74) AC electrical bus status; - (75) DC electrical bus status; - (76) APU bleed valve position (when an information source is installed); - (77) Hydraulic pressure (each system): - (78) Loss of cabin pressure; - (79) Computer failure: - (80) Heads-up display (when an information source is installed); - (81) Para-visual display (when an information source is installed); - (82) Cockpit trim control input position—pitch; - (83) Cockpit trim control input position—roll; - (84) Cockpit trim control input position—yaw; - (85) Trailing edge flap and cockpit flap control position; - (86) Leading edge flap and cockpit flap control position; - (87) Ground spoiler position and speed brake selection; - (88) All cockpit flight control input forces (control wheel, control column, rudder pedal); - (89) Yaw damper status; - (90) Yaw damper command; and - (91) Standby rudder valve status. - (b) For all turbine-engine powered transport category airplanes manufactured on or before October 11, 1991, by August 20, 2001. - (1) For airplanes not equipped as of July 16, 1996, with a flight data acquisition unit (FDAU), the parameters listed in paragraphs (a)(1) through (a)(18) of this section must be recorded within the ranges and accuracies specified in Appendix B of this part, and— - (i) For airplanes with more than two engines, the parameter described in paragraph (a)(18) is not required unless sufficient capacity is available on the existing recorder to record that parameter: - (ii) Parameters listed in paragraphs (a)(12) through (a)(17) each may be recorded from a single source. - (2) For airplanes that were equipped as of July 16, 1996, with a flight data acquisition unit (FDAU), the parameters listed in paragraphs (a)(1) through (a)(22) of this section must be recorded within the ranges, accuracies, and recording intervals specified in Appendix M of this part. Parameters listed in paragraphs (a)(12) through (a)(17) each may be recorded from a single source. - (3) The approved flight recorder required by this section must be installed at the earliest time practicable, but no later than the next heavy maintenance check after August 18, 1999 and no later than August 20, 2001. A heavy maintenance check is considered to be any time an airplane is scheduled to be out of service for 4 or more days and is scheduled to include access to major structural components. - (c) For all turbine-engine powered transport category airplanes manufactured on or before October 11, 1991— - (1) That were equipped as of July 16, 1996, with one or more digital data bus(es) and an ARINC 717 digital flight data acquisition unit (DFDAU) or equivalent, the parameters specified in paragraphs (a)(1) through (a)(22) of this section must be recorded within the ranges, accuracies, resolutions, and sampling intervals specified in Appendix M of this part by August 20, 2001. Parameters listed in paragraphs (a)(12) through (a)(14) each may be recorded from a single source. - (2) Commensurate with the capacity of the recording system (DFDAU or equivalent and the DFDR), all additional parameters for which information sources are installed and which are connected to the recording system must be recorded within the ranges, accuracies, resolutions, and sampling intervals specified in Appendix M of this part by August 20, 2001. - (3) That were subject to §121.343(e) of this part, all conditions of §121.343(e) must continue to be met until compliance with paragraph (c)(1) of this section is accomplished. - (d) For all turbine-engine-powered transport category airplanes that were manufactured after October 11, 1991— - (1) The parameters listed in paragraph (a)(1) through (a)(34) of this section must be recorded within the ranges, accuracies, resolutions, and recording intervals specified in Appendix M of this part by August 20, 2001. Parameters listed in paragraphs (a)(12) through (a)(14) each may be recorded from a single source. - (2) Commensurate with the capacity of the recording system, all additional parameters for which information sources are installed and which are connected to the recording system must be recorded within the ranges, accuracies, resolutions, and sampling intervals specified in Appendix M of this part by August 20, 2001. - (e) For all turbine-engine-powered transport category airplanes that are manufactured after August 18, 2000— - (1) The parameters listed in paragraph (a)(1) through (57) of this section must be recorded within the ranges, accuracies, resolutions, and recording intervals specified in Appendix M of this part. - (2) Commensurate with the capacity of the recording system, all additional parameters for which information sources are installed and which are connected to the recording system, must be recorded within the ranges, accuracies, resolutions, and sampling intervals specified in Appendix M of this part. - (3) In addition to the requirements of paragraphs (e)(1) and (e)(2) of this section, all Boeing 737 model airplanes must also comply with the requirements of paragraph (n) of this section, as applicable. - (f) For all turbine-engine-powered transport category airplanes manufactured after August 19, 2002— - (1) The parameters listed in paragraphs (a)(1) through (a)(88) of this section must be recorded within the ranges, accuracies, resolutions, and recording intervals specified in appendix M to this part. - (2) In addition to the requirements of paragraphs (f)(1) of this section, all Boeing 737 model airplanes must also comply with the requirements of paragraph (n) of this section. - (g) Whenever a flight data recorder required by this section is installed, it must be operated continuously from the instant the airplane begins its takeoff roll until it has completed its landing roll. - (h) Except as provided in paragraph (i) of this section, and except for recorded data erased as authorized in this paragraph, each certificate holder shall keep the recorded data prescribed by this section, as appropriate, until the airplane has been operated for at least 25 hours of the operating time specified in §121.359(a) of this part. A total of 1 hour of recorded data may be erased for the purpose of testing the flight recorder or the flight recorder system. Any erasure made in accordance with this paragraph must be of the oldest recorded data accumulated at the time of testing. Except as provided in paragraph (i) of this section, no record need be kept more than 60 days. - (i) In the event of an accident or occurrence that requires immediate notification of the National Transportation Safety Board under 49 CFR 830 of its regulations and that results in termination of the flight, the certificate holder shall remove the recorder from the airplane and keep the recorder data prescribed by this section, as appropriate, for at least 60 days or for a longer period upon the request of the Board or the Administrator. - (j) Each flight data recorder system required by this section must be installed in accordance with the requirements
of §25.1459(a) (except paragraphs (a)(3)(ii) and (a)(7), (b), (d) and (e) of this chapter. A correlation must be established between the values recorded by the flight data recorder and the corresponding values being measured. The correlation must contain a sufficient number of correlation points to accurately establish the conversion from the recorded values to engineering units or discrete state over the full operating range of the parameter. Except for airplanes having separate altitude and airspeed sensors that are an inte- - gral part of the flight data recorder system, a single correlation may be established for any group of airplanes— - (1) That are of the same type; - (2) On which the flight recorder system and its installation are the same; and - (3) On which there is no difference in the type design with respect to the installation of those sensors associated with the flight data recorder system. Documentation sufficient to convert recorded data into the engineering units and discrete values specified in the applicable appendix must be maintained by the certificate holder. - (k) Each flight data recorder required by this section must have an approved device to assist in locating that recorder under water. - (1) The following airplanes that were manufactured before August 18, 1997 need not comply with this section, but must continue to comply with applicable paragraphs of §121.343 of this chapter, as appropriate: - (1) Airplanes that meet the State 2 noise levels of part 36 of this chapter and are subject to §91.801(c) of this chapter, until January 1, 2000. On and after January 1, 2000, any Stage 2 airplane otherwise allowed to be operated under Part 91 of this chapter must comply with the applicable flight data recorder requirements of this section for that airplane. - (2) British Aerospace 1-11, General Dynamics Convair 580, General Dynamics Convair 600, General Dynamics Convair 640, deHavilland Aircraft Company Ltd. DHC-7, Fairchild Industries FH 227, Fokker F-27 (except Mark 50), F-28 Mark 1000 and Mark 4000, Gulfstream Aerospace G-159, Jetstream 4100 Series, Lockheed Aircraft Corporation Electra 10-A, Lockheed Aircraft Corporation Electra 10-B, Lockheed Aircraft Corporation Electra 10-E, Lockheed Aircraft Corporation Electra L-188, Lockheed Martin Model 382 (L-100) Hercules, Maryland Air Industries, Inc. F27, Mitsubishi Heavy Industries, Ltd. YS-11, Short Bros. Limited SD3-30, Short Bros. Limited SD3-60. - (m) All aircraft subject to the requirements of this section that are manufactured on or after April 7, 2010, must have a digital flight data recorder installed that also— - (1) Meets the requirements of $\S25.1459(a)(3)$, (a)(7), and (a)(8) of this chapter; and - (2) Retains the 25 hours of recorded information required in paragraph (h) of this section using a recorder that meets the standards of TSO-C124a, or later revision. - (n) In addition to all other applicable requirements of this section, all Boeing 737 model airplanes manufactured after August 18, 2000 must record the parameters listed in paragraphs (a)(88) through (a)(91) of this section within the ranges, accuracies, resolutions, and recording intervals specified in Appendix M to this part. Compliance with this paragraph is required no later than February 2, 2011. [Doc. No. 28109, 62 FR 38378, July 17, 1997; 62 FR 48135, Sept. 12, 1997, as amended by Amdt. 121–300, 68 FR 42936, July 18, 2003; 68 FR 50069, Aug. 20, 2003; Amdt. 121–338, 73 FR 12565, Mar. 7, 2008; Amdt. 121–342, 73 FR 73178, Dec. 2, 2008; Amdt. 121–338, 74 FR 32800, July 9, 2009] ### § 121.344a Digital flight data recorders for 10–19 seat airplanes. - (a) Except as provided in paragraph (f) of this section, no person may operate under this part a turbine-enginepowered airplane having a passenger seating configuration, excluding any required crewmember seat, of 10 to 19 seats, that was brought onto the U.S. register after, or was registered outside the United States and added to the operator's U.S. operations specifications after, October 11, 1991, unless it is equipped with one or more approved flight recorders that use a digital method of recording and storing data and a method of readily retrieving that data from the storage medium. On or before August 20, 2001, airplanes brought onto the U.S. register after October 11, 1991, must comply with either the requirements in this section or the applicable paragraphs in §135.152 of this chapter. In addition, by August 20, 2001. - (1) The parameters listed in §§121.344(a)(1) through 121.344(a)(18) of this part must be recorded with the ranges, accuracies, and resolutions specified in Appendix B of part 135 of this chapter, except that— - (i) Either the parameter listed in §121.344 (a)(12) or (a)(15) of this part must be recorded; either the param- - eters listed in §121.344(a)(13) or (a)(16) of this part must be recorded; and either the parameter listed in §121.344(a)(14) or (a)(17) of this part must be recorded. - (ii) For airplanes with more than two engines, the parameter described in §121.344(a)(18) of this part must also be recorded if sufficient capacity is available on the existing recorder to record that parameter; - (iii) Parameters listed in §§ 121.344(a)(12) through 121.344(a)(17) of this part each may be recorded from a single source; - (iv) Any parameter for which no value is contained in Appendix B of part 135 of this chapter must be recorded within the ranges, accuracies, and resolutions specified in Appendix M of this part. - (2) Commensurate with the capacity of the recording system (FDAU or equivalent and the DFDR), the parameters listed in §§121.344(a)(19) through 121.344(a)(22) of this part also must be recorded within the ranges, accuracies, resolutions, and recording intervals specified in Appendix B of part 135 of this chapter. - (3) The approved flight recorder required by this section must be installed as soon as practicable, but no later than the next heavy maintenance check or equivalent after August 18, 1999. A heavy maintenance check is considered to be any time an airplane is scheduled to be out of service for 4 more days and is scheduled to include access to major structural components. - (b) For a turbine-engine-powered airplanes having a passenger seating configuration, excluding any required crewmember seat, of 10 to 19 seats, that are manufactured after August 18, 2000. - (1) The parameters listed in §§ 121.344(a)(1) through 121.344(a)(57) of this part, must be recorded within the ranges, accuracies, resolutions, and recording intervals specified in Appendix M of this part. - (2) Commensurate with the capacity of the recording system, all additional parameters listed in §121.344(a) of this part for which information sources are installed and which are connected to the recording system, must be recorded within the ranges, accuracies, resolutions, and sampling intervals specified in Appendix M of this part by August 20, 2001. - (c) For all turbine-engine-powered airplanes having a passenger seating configuration, excluding any required crewmember seats, of 10 to 19 seats, that are manufactured after August 19, 2002, the parameters listed in §121.344(a)(1) through (a)(88) of this part must be recorded within the ranges, accuracies, resolutions, and recording intervals specified in Appendix M of this part. - (d) Each flight data recorder system required by this section must be installed in accordance with the requirements of §23.1459(a) (except paragraphs (a)(3)(ii) and (6), (b), (d) and (e) of this chapter. A correlation must be established between the values recorded by the flight data recorder and the corresponding values being measured. The correlation must contain a sufficient number of correlation points to accurately establish the conversion from the recorded values to engineering units or discrete state over the full operating range of the parameter. A single correlation may be established for any group of airplanes- - (1) That are of the same type; - (2) On which the flight recorder system and its installation are the same; and - (3) On which there is no difference in the type design with respect to the installation of those sensors associated with the flight data recorder system. Correlation documentation must be maintained by the certificate holder. - (e) All airplanes subject to this section are also subject to the requirements and exceptions stated in §121.344(g) through (k) and §121.346. - (f) For airplanes that were manufactured before August 18, 1997, the following airplane types need not comply with this section, but must continue to comply with applicable paragraphs of §135.152 of this chapter, as appropriate: Beech Aircraft-99 Series, Beech Air-1300, Beech Aircraft Construcciones Aeronauticas, SA(CASA) C-212, deHavilland DHC-6, Dornier 228, HS-748, Embraer EMB 110, Jetstream 3101, Jetstream 3201, Fairchild Aircraft SA-226, Fairchild Metro SA-227. - (g) All airplanes subject to the requirements of this section that are manufactured on or after April 7, 2010, must have a digital flight data recorder installed that also— - (1) Meets the requirements in $\S 23.1459(a)(3)$, (a)(6), and (a)(7) or $\S 25.1459(a)(3)$, (a)(7), and (a)(8) of this chapter, as applicable; and - (2) Retains the 25 hours of recorded information required in \$121.344(g) using a recorder that meets the standards of TSO-C124a, or later revision. [Doc. No. 28109, 62 FR 38380, July 17, 1997; 62 FR 48135, Sept. 12, 1997; 62 FR 65202, Dec. 11, 1997, as amended by Amdt. 121–300, 68 FR 42936, July 18, 2003; Amdt. 121–338, 73 FR 12566, Mar. 7, 2008; Amdt. 121–338, 74 FR 32801, July 9, 2009; Amdt. 121–347, 75 FR 7356, Feb. 19, 2010] #### §121.345 Radio equipment. - (a) No person may operate an airplane unless it is equipped with radio equipment required for the kind of operation being conducted. - (b) Where two independent (separate and complete) radio systems are required by §§ 121.347 and 121.349, each system
must have an independent antenna installation except that, where rigidly supported nonwire antennas or other antenna installations of equivalent reliability are used, only one antenna is required. - (c) ATC transponder equipment installed within the time periods indicated below must meet the performance and environmental requirements of the following TSO's: - (1) Through January 1, 1992: (i) Any class of TSO-C74b or any class of TSO-C74c as appropriate, provided that the equipment was manufactured before January 1, 1990; or - (ii) The appropriate class of TSO-C112 (Mode S). - (2) After January 1, 1992: The appropriate class of TSO-C112 (Mode S). For purposes of paragraph (c) (2) of this section, "installation" does not include— - (i) Temporary installation of TSO-C74b or TSO-C74c substitute equipment, as appropriate, during maintenance of the permanent equipment; - (ii) Reinstallation of equipment after temporary removal for maintenance; or - (iii) For fleet operations, installation of equipment in a fleet aircraft after removal of the equipment for maintenance from another aircraft in the same operator's fleet. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964, as amended by Amdt. 121–101, 37 FR 28499, Dec. 27, 1972; Amdt. 121–190, 52 FR 3391, Feb. 3, 1987] #### §121.346 Flight data recorders: filtered data. - (a) A flight data signal is filtered when an original sensor signal has been changed in any way, other than changes necessary to: - (1) Accomplish analog to digital conversion of the signal; - (2) Format a digital signal to be DFDR compatible; or - (3) Eliminate a high frequency component of a signal that is outside the operational bandwidth of the sensor. - (b) An original sensor signal for any flight recorder parameter required to be recorded under §121.344 may be filtered only if the recorded signal value continues to meet the requirements of Appendix B or M of this part, as applicable. - (c) For a parameter described in §121.344(a) (12) through (17), (42), or (88), or the corresponding parameter in Appendix B of this part, if the recorded signal value is filtered and does not meet the requirements of Appendix B or M of this part, as applicable, the certificate holder must: - (1) Remove the filtering and ensure that the recorded signal value meets the requirements of Appendix B or M of this part, as applicable; or - (2) Demonstrate by test and analysis that the original sensor signal value can be reconstructed from the recorded data. This demonstration requires that: - (i) The FAA determine that the procedure and the test results submitted by the certificate holder as its compliance with paragraph (c)(2) of this section are repeatable; and - (ii) The certificate holder maintains documentation of the procedure required to reconstruct the original sensor signal value. This documentation is also subject to the requirements of §121.344(i). - (d) Compliance. Compliance is required as follows: - (1) No later than October 20, 2011, each operator must determine, for each airplane on its operations specifications, whether the airplane's DFDR system is filtering any of the parameters listed in paragraph (c) of this section. The operator must create a record of this determination for each airplane it operates, and maintain it as part of the correlation documentation required by §121.344(j)(3) of this part. - (2) For airplanes that are not filtering any listed parameter, no further action is required unless the airplane's DFDR system is modified in a manner that would cause it to meet the definition of filtering on any listed parameter. - (3) For airplanes found to be filtering a parameter listed in paragraph (c) of this section, the operator must either: - (i) No later than April 21, 2014, remove the filtering; or - (ii) No later than April 22, 2013, submit the necessary procedure and test results required by paragraph (c)(2) of this section. - (4) After April 21, 2014, no aircraft flight data recording system may filter any parameter listed in paragraph (c) of this section that does not meet the requirements of Appendix B or M of this part, unless the certificate holder possesses test and analysis procedures and the test results that have been approved by the FAA. All records of tests, analysis and procedures used to comply with this section must be maintained as part of the correlation documentation required by \$121.344(j)(3) of this part. [Doc. No. FAA-2006-26135, 75 FR 7356, Feb. 19, 2010] #### § 121.347 Communication and navigation equipment for operations under VFR over routes navigated by pilotage. - (a) No person may operate an airplane under VFR over routes that can be navigated by pilotage unless the airplane is equipped with the radio communication equipment necessary under normal operating conditions to fulfill the following: - (1) Communicate with at least one appropriate station from any point on the route: - (2) Communicate with appropriate air traffic control facilities from any point within Class B, Class C, or Class D airspace, or within a Class E surface area designated for an airport in which flights are intended; and - (3) Receive meteorological information from any point en route by either of two independent systems. One of the means provided to comply with this subparagraph may be used to comply with paragraphs (a)(1) and (2) of this section. - (b) No person may operate an airplane at night under VFR over routes that can be navigated by pilotage unless that airplane is equipped with— - (1) Radio communication equipment necessary under normal operating conditions to fulfill the functions specified in paragraph (a) of this section; and - (2) Navigation equipment suitable for the route to be flown. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964, as amended by Amdt. 121–226, 56 FR 65663, Dec. 17, 1991; Amdt. 121–333, 72 FR 31681, June 7, 20071 #### § 121.349 Communication and navigation equipment for operations under VFR over routes not navigated by pilotage or for operations under IFR or over the top. - (a) Navigation equipment requirements—General. No person may conduct operations under VFR over routes that cannot be navigated by pilotage, or operations conducted under IFR or over the top, unless— - (1) The en route navigation aids necessary for navigating the airplane along the route (e.g., ATS routes, arrival and departure routes, and instrument approach procedures, including missed approach procedures if a missed approach routing is specified in the procedure) are available and suitable for use by the aircraft navigation systems required by this section; - (2) The airplane used in those operations is equipped with at least— - (i) Except as provided in paragraph (c) of this section, two approved independent navigation systems suitable for navigating the airplane along the route to be flown within the degree of accuracy required for ATC; - (ii) One marker beacon receiver providing visual and aural signals; and - (iii) One ILS receiver; and - (3) Any RNAV system used to meet the navigation equipment requirements of this section is authorized in the certificate holder's operations specifications. - (b) Communication equipment requirements. No person may operate an airplane under VFR over routes that cannot be navigated by pilotage, and no person may operate an airplane under IFR or over the top, unless the airplane is equipped with— - (1) At least two independent communication systems necessary under normal operating conditions to fulfill the functions specified in §121.347 (a); and - (2) At least one of the communication systems required by paragraph (b)(1) of this section must have two-way voice communication capability. - (c) Use of a single independent navigation system for operations under VFR over routes that cannot be navigated by pilotage, or operations conducted under IFR or over the top. Notwithstanding the requirements of paragraph (a)(2)(i) of this section, the airplane may be equipped with a single independent navigation system suitable for navigating the airplane along the route to be flown within the degree of accuracy required for ATC if: - (1) It can be shown that the airplane is equipped with at least one other independent navigation system suitable, in the event of loss of the navigation capability of the single independent navigation system permitted by this paragraph at any point along the route, for proceeding safely to a suitable airport and completing an instrument approach; and - (2) The airplane has sufficient fuel so that the flight may proceed safely to a suitable airport by use of the remaining navigation system, and complete an instrument approach and land. - (d) Use of VOR navigation equipment. If VOR navigation equipment is used to comply with paragraph (a) or (c) of this section, no person may operate an airplane unless it is equipped with at least one approved DME or suitable RNAV system. - (e) Additional communication system equipment requirements for operators subject to §121.2. In addition to the requirements in paragraph (b) of this section, ### Federal Aviation Administration, DOT no person may operate an airplane having a passenger seat configuration of 10 to 30 seats, excluding each crewmember seat, and a maximum payload capacity of 7,500 pounds or less, under IFR, over the top, or in extended over-water operations unless it is equipped with at least— - (1) Two microphones; and - (2) Two headsets, or one headset and one speaker. [Doc. No. FAA–2002–14002, 72 FR 31681, June 7, 2007] #### § 121.351 Communication and navigation equipment for extended overwater operations and for certain other operations. - (a) Except as provided in paragraph (c) of this section, no person may conduct an extended over-water operation unless the airplane is equipped with at least two independent long-range navigation systems and at least two independent long-range communication systems necessary under normal operating conditions to fulfill the following functions— - (1) Communicate
with at least one appropriate station from any point on the route; - (2) Receive meteorological information from any point on the route by either of two independent communication systems. One of the communication systems used to comply with this paragraph may be used to comply with paragraphs (a)(1) and (a)(3) of this section; and - (3) At least one of the communication systems must have two-way voice communication capability. - (b) No certificate holder conducting a flag or supplemental operation or a domestic operation within the State of Alaska may conduct an operation without the equipment specified in paragraph (a) of this section, if the Administrator finds that equipment to be necessary for search and rescue operations because of the nature of the terrain to be flown over. - (c) Notwithstanding the requirements of paragraph (a) of this section, installation and use of a single LRNS and a single LRCS may be authorized by the Administrator and approved in the certificate holder's operations specifications for operations and routes in certain geographic areas. The following are among the operational factors the Administrator may consider in granting an authorization: - (1) The ability of the flightcrew to navigate the airplane along the route within the degree of accuracy required for ATC. - (2) The length of the route being flown, and - (3) The duration of the very high frequency communications gap. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964, as amended by Amdt. 121–253, 61 FR 2611, Jan. 26, 1996; Amdt. 121–254, 61 FR 7191, Feb. 26, 1996; Amdt. 121–333, 72 FR 31682, June 7, 2007] #### § 121.353 Emergency equipment for operations over uninhabited terrain areas: Flag, supplemental, and certain domestic operations. Unless the airplane has the following equipment, no person may conduct a flag or supplemental operation or a domestic operation within the States of Alaska or Hawaii over an uninhabited area or any other area that (in its operations specifications) the Administrator specifies required equipment for search and rescue in case of an emergency: - (a) Suitable pyrotechnic signaling devices. - (b) An approved survival type emergency locator transmitter. Batteries used in this transmitter must be replaced (or recharged, if the battery is rechargeable) when the transmitter has been in use for more than 1 cumulative hour, or when 50 percent of their useful life (or for rechargeable batteries, 50 percent of their useful life of charge) has expired, as established by the transmitter manufacturer under its approval. The new expiration date for replacing (or recharging) the battery must be legibly marked on the outside of the transmitter. The battery useful life (or useful life of charge) requirements of this paragraph do not apply to batteries (such as water-activated batteries) that are essentially unaffected during probable storage intervals. - (c) Enough survival kits, appropriately equipped for the route to be flown for the number of occupants of the airplane. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964, as amended by Amdt. 121–79, 36 FR 18724, Sept. 21, 1971; Amdt. 121–106, 38 FR 22378 Aug. 20, 1973; Amdt. 121–158, 45 FR 38348, June 9, 1980; Amdt. 121–239, 59 FR 32057, June 21, 1994; Amdt. 121–251, 60 FR 65932, Dec. 20, 1995] ### § 121.354 Terrain awareness and warning system. (a) Airplanes manufactured after March 29, 2002. No person may operate a turbine-powered airplane unless that airplane is equipped with an approved terrain awareness and warning system that meets the requirements for Class A equipment in Technical Standard Order (TSO)-C151. The airplane must also include an approved terrain situational awareness display. (b) Airplanes manufactured on or before March 29, 2002. No person may operate a turbine-powered airplane after March 29, 2005, unless that airplane is equipped with an approved terrain awareness and warning system that meets the requirements for Class A equipment in Technical Standard Order (TSO)—C151. The airplane must also include an approved terrain situational awareness display. (Approved by the Office of Management and Budget under control number 2120-0631) - (c) Airplane Flight Manual. The Airplane Flight Manual shall contain appropriate procedures for— - (1) The use of the terrain awareness and warning system; and - (2) Proper flight crew reaction in response to the terrain awareness and warning system audio and visual warnings [Doc. No. 29312, 65 FR 16755, Mar. 29, 2000] ## § 121.355 Equipment for operations on which specialized means of navigation are used. - (a) No certificate holder may conduct an operation— - (1) Using Doppler Radar or an Inertial Navigation System outside the 48 contiguous States and the District of Columbia, unless such systems have been approved in accordance with appendix G to this part; or - (2) Using Doppler Radar or an Inertial Navigation System within the 48 contiguous States and the District of Columbia, or any other specialized means of navigation, unless it shows that an adequate airborne system is provided for the specialized navigation authorized for the particular operation. (b) Notwithstanding paragraph (a) of this section, Doppler Radar and Inertial Navigation Systems, and the training programs, maintenance programs, relevant operations manual material, and minimum equipment lists prepared in accordance therewith, approved before April 29, 1972, are not required to be approved in accordance with that paragraph. [Doc. No. 10204, 37 FR 6464, Mar. 30, 1972] #### § 121.356 Collision avoidance system. Effective January 1, 2005, any airplane you operate under this part must be equipped and operated according to the following table: #### COLLISION AVOIDANCE SYSTEMS | OOLLISION AVOIDANCE OTSTEMS | | | |---|--|--| | If you operate any— | Then you must operate that airplane with— | | | (a) Turbine-powered airplane of more than 33,000 pounds maximum certificated take-off weight. | (1) An appropriate class of Mode S transponder that meets Technical Standard Order (TSO) C-112, or a later version, and one of the following approved units: (i) TCAS II that meets TSO C-119b (version 7.0), or takeoff weight a later version. (ii) TCAS II that meets TSO C-119a (version 6.04A Enhanced) that was installed in that airplane before May 1, 2003. If that TCAS II version 6.04A Enhanced no longer can be repaired to TSO C-119a standards, it must be replaced with a TCAS II that meets TSO C-119b (version 7.0), or a later version. (iii) A collision avoidance system equivalent to TSO C-119b (version 7.0), or a later version, capable of coordinating with units that meet TSO C-119a (version 6.04A Enhanced), or a later version. | | | (b) Passenger or combination cargo/passenger (combi) airplane that has a passenger seat configuration of 10–30 seats. (c) Piston-powered airplane of more than 33,000 pounds maximum certificated takeoff weight. | TCAS I that meets TSO C-118, or a later version, or A collision avoidance system equivalent to has a TSO C-118, or a later version, or A collision avoidance system and Mode S transponder that meet paragraph (a)(1) of this section. TCAS I that meets TSO C-118, or a later version, or A collision avoidance system equivalent to maximum TSO C-118, or a later version, or A collision avoidance system and Mode S transponder that meet paragraph (a)(1) of this section. | | [Doc. No. FAA-2001-10910, 68 FR 15902, Apr. 1, 2003] ### § 121.357 Airborne weather radar equipment requirements. - (a) No person may operate any transport category airplane (except C-46 type airplanes) or a nontransport category airplane certificated after December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. - (b) [Reserved] - (c) Each person operating an airplane required to have approved airborne weather radar equipment installed shall, when using it under this part, operate it in accordance with the following: - (1) Dispatch. No person may dispatch an airplane (or begin the flight of an airplane in the case of a certificate holder, that does not use a dispatch system) under IFR or night VFR conditions when current weather reports indicate that thunderstorms, or other potentially hazardous weather conditions that can be detected with airborne weather radar, may reasonably be expected along the route to be flown, unless the airborne weather radar equipment is in satisfactory operating condition. - (2) If the airborne weather radar becomes inoperative en route, the airplane must be operated in accordance with the approved instructions and procedures specified in the operations manual for such an event. - (d) This section does not apply to airplanes used solely within the State of Hawaii or within the State of Alaska and that part of Canada west of longitude 130 degrees W, between latitude 70 degrees N, and latitude 53 degrees N, or during any training, test, or ferry flight. - (e) Notwithstanding any other provision of this chapter,
an alternate electrical power supply is not required for airborne weather radar equipment. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964, as amended by Amdt. 121–18, 31 FR 5825, Apr. 15, 1966; Amdt. 121–130, 41 FR 47229, Oct. 28, 1976; Amdt. 121–251, 60 FR 65932, Dec. 20, 1995] ### § 121.358 Low-altitude windshear system equipment requirements. - (a) Airplanes manufactured after January 2, 1991. No person may operate a turbine-powered airplane manufactured after January 2, 1991, unless it is equipped with either an approved airborne windshear warning and flight guidance system, an approved airborne detection and avoidance system, or an approved combination of these systems. - (b) Airplanes manufactured before January 3, 1991. Except as provided in paragraph (c) of this section, after January 2, 1991, no person may operate a turbine-powered airplane manufactured before January 3, 1991 unless it meets one of the following requirements as applicable. - (1) The makes/models/series listed below must be equipped with either an approved airborne windshear warning and flight guidance system, an approved airborne detection and avoidance system, or an approved combination of these systems: - (i) A-300-600; - (ii) A-310—all series; - (iii) A-320—all series; - (iv) B-737-300, 400, and 500 series; - (v) B-747-400; - (vi) B-757—all series; - (vii) B-767—all series; - (viii) F-100—all series; - (ix) MD-11—all series; and - $\left(x\right)$ MD-80 series equipped with an EFIS and Honeywell-970 digital flight guidance computer. - (2) All other turbine-powered airplanes not listed above must be equipped with as a minimum requirement, an approved airborne windshear warning system. These airplanes may be equipped with an approved airborne windshear detection and avoidance system, or an approved combination of these systems. - (c) Extension of the compliance date. A certificate holder may obtain an extension of the compliance date in paragraph (b) of this section if it obtains FAA approval of a retrofit schedule. To obtain approval of a retrofit schedule and show continued compliance with that schedule, a certificate holder must do the following: - (1) Submit a request for approval of a retrofit schedule by June 1, 1990, to the Flight Standards Division Manager in the region of the certificate holding district office. - (2) Show that all of the certificate holder's airplanes required to be equipped in accordance with this section will be equipped by the final compliance date established for TCAS II retrofit. - (3) Comply with its retrofit schedule and submit status reports containing information acceptable to the Administrator. The initial report must be submitted by January 2, 1991, and subsequent reports must be submitted every six months thereafter until completion of the schedule. The reports must be submitted to the certificate holder's assigned Principal Avionics Inspector. - (d) Definitions. For the purposes of this section the following definitions apply— - (1) Turbine-powered airplane includes, e.g., turbofan-, turbojet-, propfan-, and ultra-high bypass fan-powered airplanes. The definition specifically excludes turbopropeller-powered airplanes. - (2) An airplane is considered manufactured on the date the inspection acceptance records reflect that the airplane is complete and meets the FAA Approved Type Design data. [Doc. No. 25954, 55 FR 13242, Apr. 9, 1990] ### § 121.359 Cockpit voice recorders. - (a) No certificate holder may operate a large turbine engine powered airplane or a large pressurized airplane with four reciprocating engines unless an approved cockpit voice recorder is installed in that airplane and is operated continuously from the start of the use of the checklist (before starting engines for the purpose of flight), to completion of the final checklist at the termination of the flight. - (b) [Reserved] - (c) The cockpit voice recorder required by paragraph (a) of this section must meet the following application standards: - (1) The requirements of part 25 of this chapter in affect on August 31, 1977. - (2) After September 1, 1980, each recorder container must— - (i) Be either bright orange or bright yellow; - (ii) Have reflective tape affixed to the external surface to facilitate its location under water; and - (iii) Have an approved underwater locating device on or adjacent to the container which is secured in such a manner that they are not likely to be separated during crash impact, unless the cockpit voice recorder, and the flight recorder required by \$121.343, are installed adjacent to each other in such a manner that they are not likely to be separated during crash impact. - (d) No person may operate a multiengine, turbine-powered airplane having a passenger seat configuration of 10–19 seats unless it is equipped with an approved cockpit voice recorder that: - (1) Is installed in compliance with $\S23.1457(a)(1)$ and (2), (b), (c), (d)(1)(i), (2) and (3), (e), (f), and (g); or $\S25.1457(a)(1)$ and (2), (b), (c), (d)(1)(i), (2) and (3), (e), (f), and (g) of this chapter, as applicable; and - (2) Is operated continuously from the use of the checklist before the flight to completion of the final checklist at the end of the flight. - (e) No person may operate a multiengine, turbine-powered airplane having a passenger seat configuration of 20 to 30 seats unless it is equipped with an approved cockpit voice recorder that— - (1) Is installed in accordance with the requirements of $\S 23.1457$ (except paragraphs (a)(6), (d)(1)(ii), (4), and (5)) or $\S 25.1457$ (except paragraphs (a)(6), (d)(1)(ii), (4), and (5)) of this chapter, as applicable; and - (2) Is operated continuously from the use of the checklist before the flight to completion of the final checklist at the end of the flight. - (f) In complying with this section, an approved cockpit voice recorder having an erasure feature may be used, so that at any time during the operation of the recorder, information recorded more than 30 minutes earlier may be erased or otherwise obliterated. - (g) For those aircraft equipped to record the uninterrupted audio signals received by a boom or a mask microphone, the flight crewmembers are required to use the boom microphone below 18,000 feet mean sea level. No person may operate a large turbine engine powered airplane or a large pressurized airplane with four reciprocating engines manufactured after October 11, 1991, or on which a cockpit voice recorder has been installed after October 11, 1991, unless it is equipped to record the uninterrupted audio signal received by a boom or mask microphone in accordance with §25.1457(c)(5) of this chapter. - (h) In the event of an accident or occurrence requiring immediate notification of the National Transportation Safety Board under part 830 of its regulations, which results in the termination of the flight, the certificate holder shall keep the recorded information for at least 60 days or, if requested by the Administrator or the Board, for a longer period. Information obtained from the record is used to assist in determining the cause of accidents or occurrences in connection with investigations under part 830. The Administrator does not use the record in any civil penalty or certificate action. - (i) By April 7, 2012, all turbine engine-powered airplanes subject to this section that are manufactured before April 7, 2010, must have a cockpit voice recorder installed that also— - (1) Meets the requirements of $\S23.1457(d)(6)$ or $\S25.1457(d)(6)$ of this chapter, as applicable; - (2) Retains at least the last 2 hours of recorded information using a recorder that meets the standards of TSO-C123a, or later revision; and - (3) Is operated continuously from the use of the checklist before the flight to completion of the final checklist at the end of the flight. - (4) If transport category, meets the requirements in $\S25.1457(a)(3)$, (a)(4), and (a)(5) of this chapter. - (j) All turbine engine-powered airplanes subject to this section that are manufactured on or after April 7, 2010, must have a cockpit voice recorder installed that also— - (1) Is installed in accordance with the requirements of §23.1457 (except for paragraph (a)(6) or §25.1457 (except for paragraph (a)(6)) of this chapter, as applicable: - (2) Retains at least the last 2 hours of recorded information using a recorder that meets the standards of TSO-C123a, or later revision; and - (3) Is operated continuously from the use of the checklist before the flight to completion of the final checklist at the end of the flight. - (4) For all airplanes manufactured on or after December 6, 2010, also meets the requirements of §23.1457(a)(6) or §25.1457(a)(6) of this chapter, as applicable. - (k) All airplanes required by this part to have a cockpit voice recorder and a flight data recorder, that install datalink communication equipment on or after December 6, 2010, must record all datalink messages as required by the certification rule applicable to the airplane. [Doc. No. 6258, 29 FR 19205, Dec. 31, 1964] EDITORIAL NOTE: For FEDERAL REGISTER citations affecting § 121.359, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov. #### § 121.360 Ground proximity warningglide slope deviation alerting system. - (a) No person may operate a turbine-powered airplane unless it is equipped with a ground proximity warning system that meets the performance and environmental standards of TSO-C92 (available from the FAA, 800 Independence Avenue SW., Washington, DC 20591) or incorporates TSO-approved ground proximity warning equipment. - (b) For the ground proximity warning system required by this section, the Airplane Flight Manual shall contain— - (1) Appropriate procedures for- - (i) The use of the equipment; - (ii) Proper flightcrew action with respect to the equipment; - (iii) Deactivation for planned abnormal and emergency conditions; - (iv) Inhibition of Mode
4 warnings based on flaps being in other than the landing configuration if the system incorporates a Mode 4 flap warning inhibition control; and - (2) An outline of all input sources that must be operating. - (c) No person may deactivate a ground proximity warning system required by this section except in accordance with the procedures contained in the Airplane Flight Manual. - (d) Whenever a ground proximity warning system required by this section is deactivated, an entry shall be made in the airplane maintenance record that includes the date and time of deactivation. - (e) No person may operate a turbine-powered airplane unless it is equipped with a ground proximity warning/glide slope deviation alerting system that meets the performance and environmental standards contained in TSO-C92a or TSO-C92b or incorporates TSO-approved ground proximity warning-glide slope deviation alerting equipment. - (f) No person may operate a turbojet powered airplane equipped with a system required by paragraph (e) of this section, that incorporates equipment that meets the performance and environmental standards of TSO-C92b or is approved under that TSO, using other than Warning Envelopes 1 or 3 for Warning Modes 1 and 4. - (g) This section expires on March 29, 2005. [Doc. No. 28154, 60 FR 65933, Dec. 20, 1995, as amended by Amdt. 121–273, 65 FR 16755, Mar. 29, 2000] ### Subpart L—Maintenance, Preventive Maintenance, and Alterations SOURCE: Docket No. 6258, 29 FR 19210, Dec. 31, 1964, unless otherwise noted. ### §121.361 Applicability. - (a) Except as provided by paragraph (b) of this section, this subpart prescribes requirements for maintenance, preventive maintenance, and alterations for all certificate holders. - (b) The Administrator may amend a certificate holder's operations specifications to permit deviation from those provisions of this subpart that would prevent the return to service and use of airframe components, powerplants, appliances, and spare parts thereof because those items have been maintained, altered, or inspected by persons employed outside the United States who do not hold U.S. airman certificates. Each certificate holder who uses parts under this deviation must provide for surveillance of facili- ties and practices to assure that all work performed on these parts is accomplished in accordance with the certificate holder's manual. [Doc. No. 8754, 33 FR 14406, Sept. 25, 1968] ### § 121.363 Responsibility for airworthiness. - (a) Each certificate holder is primarily responsible for— - (1) The airworthiness of its aircraft, including airframes, aircraft engines, propellers, appliances, and parts thereof; and - (2) The performance of the maintenance, preventive maintenance, and alteration of its aircraft, including airframes, aircraft engines, propellers, appliances, emergency equipment, and parts thereof, in accordance with its manual and the regulations of this chapter. - (b) A certificate holder may make arrangements with another person for the performance of any maintenance, preventive maintenance, or alterations. However, this does not relieve the certificate holder of the responsibility specified in paragraph (a) of this section. [Doc. No. 6258, 29 FR 19210, Dec. 31, 1964, as amended by Amdt. 121–106, 38 FR 22378, Aug. 20, 1973] ## § 121.365 Maintenance, preventive maintenance, and alteration organization. - (a) Each certificate holder that performs any of its maintenance (other than required inspections), preventive maintenance, or alterations, and each person with whom it arranges for the performance of that work must have an organization adequate to perform the work. - (b) Each certificate holder that performs any inspections required by its manual in accordance with §121.369(b)(2) or (3) (in this subpart referred to as required inspections) and each person with whom it arranges for the performance of that work must have an organization adequate to perform that work. - (c) Each person performing required inspections in addition to other maintenance, preventive maintenance, or